课时提升作业十四利用导数研究函数的单调性(25分钟60分)一、选择题(每小题5分,共25分)1.函数f(x)=(x-3)ex的单调递增区间是()A.(-∞,2)B.(0,3)C.(1,4)D.(2,+∞)【解析】选D.因为f(x)=(x-3)·ex,则f′(x)=ex(x-2),令f′(x)>0,得x>2,所以f(x)的单调递增区间为(2,+∞).2.(2016·抚州模拟)若函数f(x)=x+alnx不是单调函数,则实数a的取值范围是()A.[0,+∞)B.(-∞,0]C.(-∞,0)D.(0,+∞)【解析】选C.由题意知x>0,f′(x)=1+,要使函数f(x)=x+alnx不是单调函数,则需方程1+=0在x>0上有解,即x=-a,所以a<0.【加固训练】已知函数f(x)=x3+ax+4,“则a>0”“是f(x)在R”上单调递增的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【解析】选A.f′(x)=x2+a,当a≥0时,f′(x)≥0恒成立,“故a>0”“是f(x)在R”上单调递增的充分不必要条件.3.(2016·马鞍山模拟)对于实数集R上的可导函数f(x),若满足(x2-3x+2)f′(x)<0,则在区间[1,2]上必有()A.f(1)≤f(x)≤f(2)B.f(x)≤f(1)C.f(x)≥f(2)D.f(x)≤f(1)或f(x)≥f(2)【解析】选A.由(x2-3x+2)f′(x)<0知,当x2-3x+2<0,即1
0,所以f(x)是区间[1,2]上的单调递增函数,所以f(1)≤f(x)≤f(2).4.(2016·厦门模拟)已知函数f(x)的图象如图所示,则f(x)的解析式可能是()A.f(x)=-x3B.f(x)=+x3C.f(x)=-x3D.f(x)=--x3【解析】选A.根据函数的定义域可以排除选项C,D,对于选项B:f′(x)=+3x2,当x>时,f′(x)不可能恒小于0,即函数不可能恒为减函数,故不符合.5.(2016·深圳模拟)已知f(x)的定义域为(0,+∞),f′(x)为f(x)的导函数,且满足f(x)<-xf′(x),则不等式f(x+1)>(x-1)·f(x2-1)的解集是()A.(0,1)B.(1,+∞)C.(1,2)D.(2,+∞)【解析】选D.因为f(x)+xf′(x)<0,所以(xf(x))′<0,xf(x)在(0,+∞)上为减函数,又因为(x+1)f(x+1)>(x2-1)·f(x2-1),所以02.二、填空题(每小题5分,共15分)6.函数f(x)=的单调递增区间是.【解析】由导函数f′(x)==>0,得cosx>-,所以2kπ-q,则p-q>0,<1,f(p+1)-f(q+1)0),则h′(x)=--<0,即h(x)在(0,+∞)上是减函数.由h(1)=0知,当00,从而f′(x)>0;当x>1时,h(x)<0,从而f′(x)<0.综上可知,f(x)的单调递增区间是(0,1),单调递减区间是(1,+∞).10.(2016·朝阳模拟)设函数f(x)=alnx+,其中a为常数.(1)若a=0,求曲线y=f(x)在点(1,f(1))处的切线方程.(2)讨论函数f(x)的单调性.【解题提示】(1)当a=0时,求出函数f(x)的导函数f′(x),进而求出切线的斜率,即可求出切线方程.(2)结合函数的导函数,对a进行分情况讨论,判断导函数的符号,进而确定其单调性.【解析】(1)由题意知a=0时,f(x)=,x∈(0,+∞),此时f′(x)=,可得f′(1)=,又f(1)=0,所以曲线y=f(x)在(1,f(1))处的切线方程为x-2y-1=0.(2)函数f(x)的定义域为(0,+∞).f′(x)=+=.当a≥0时,f′(x)>0,函数f(x)在(0,+∞)上单调递增,...