第 2 课时 案例 2 秦九韶算法导入新课 思路 1(情境导入) 大家都喜欢吃苹果吧,我们吃苹果都是从外到里一口一口的吃,而虫子却是先钻到苹果里面从里到外一口一口的吃,由此看来处理同一个问题的方法多种多样 .怎样求多项式f(x)=x5+x4+x3+x2+x+1 当 x=5 时的值呢?方法也是多种多样的,今天我们开始学习秦九韶算法. 思路 2(直接导入) 前面我们学习了辗转相除法与更相减损术, 今天我们开始学习秦九韶算法.推进新课新知探究提出问题(1)求多项式 f(x)=x5+x4+x3+x2+x+1 当 x=5 时的值有哪些方法?比较它们的特点.(2)什么是秦九韶算法?(3)怎样评价一个算法的好坏?讨论结果:(1)怎样求多项式 f(x)=x5+x4+x3+x2+x+1 当 x=5 时的值呢? 一个自然的做法就是把 5 代入多项式 f(x),计算各项的值,然后把它们加起来,这时,我们一共做了 1+2+3+4=10 次乘法运算,5 次加法运算. 另一种做法是先计算 x2的值,然后依次计算 x2·x,(x2·x)·x,((x2·x)·x)·x 的值,这样每次都可以利用上一次计算的结果,这时,我们一共做了 4 次乘法运算,5 次加法运算. 第二种做法与第一种做法相比,乘法的运算次数减少了,因而能够提高运算效率,对于计算机来说,做一次乘法运算所用的时间比做一次加法运算要长得多,所以采用第二种做法,计算机能更快地得到结果.(2)上面问题有没有更有效的算法呢?我国南宋时期的数学家秦九韶(约 1202~1261)在他的著作《数书九章》中提出了下面的算法: 把一个 n 次多项式 f(x)=anxn+an-1xn-1+…+a1x+a0改写成如下形式:f(x)=anxn+an-1xn-1+…+a1x+a0=(anxn-1+an-1xn-2+…+a1)x+ a0=((anxn-2+an-1xn-3+…+a2)x+a1)x+a0=…=(…((anx+an-1)x+an-2)x+…+a1)x+a0.求多项式的值时,首先计算最内层括号内一次多项式的值,即v1=anx+an-1,然后由内向外逐层计算一次多项式的值,即v2=v1x+an-2,v3=v2x+an-3,…vn=vn-1x+a0,这样,求 n 次多项式 f(x)的值就转化为求 n 个一次多项式的值.上述方法称为秦九韶算法.直到今天,这种算法仍是多项式求值比较先进的算法.(3)计算机的一个很重要的特点就是运算速度快,但即便如此,算法好坏的一个重要标志仍然是运算的次数.如果一个算法从理论上需要超出计算机允许范围内的运算次数,那么这样的算法就只能是一个理论的算法.1应用示例例 1 已知一个 5 次多项式为 f(x)=5x5+2x4+3.5x3-2.6x2+1.7x-0.8, 用秦...