第 36 课时 函数模型及其应用(二)【学习目标】1.能用指数函数、对数函数解决如复利、人口增长等与增长率有关的问题;2.提高学生根据实际问题建立函数关系的能力.【课前导学】1.复利把前一期的利息和本金加在一起做本金,再计算下一期的利息.(就是人们常说的“利滚利”).设本金为,每期利率为,存期为,则本金与利息和 .答案:2.单利在计算每一期的利息时,本金还是第一期的本金.设本金为,每期利率为,存期为,则本金与利息和 .答案:3.在实际问题中,常常遇到有关平均增长率的问题,如果原来产值的基础数为,平均增长率为,则对于时间的总产值,可以用公式 表示.答案:【课堂活动】一.建构数学:总结解应用题的策略:一般思路可表示如下: 因此,解决应用题的一般程序是: ①审题:弄清题意,分清条件和结论,理顺数量关系; ②建模:将文字语言转化为数学语言,利用数学知识,建立相应的数学模型; ③解模:求解数学模型,得出数学结论;④ 还原:将用数学知识和方法得出的结论,还原为实际问题的意义.二.应用数学:例 1 物体在常温下的温度变化可以用牛顿冷却规律来描述:设物体的初始温度是,经过一定时间 后的温度是,则,其中表示环境温度,称为半衰期.现有一杯用热水冲的速容咖啡 ,放在的房间中,如果咖啡降到需要,那么降温到时,需要多长时间?解:由题意知,即,解之,得,故 , 当时,代入上式, 得 , 即 , 两边取对数,用计算器求得因此,约需要,可降温到.【解后反思】本题是利用已知的函数模型来解决物理问题,需由已知条件先确定函数式,然后再求解.本题的实质为已知自变量的值,求对应的函数值的数学问题,由于运算比较复杂,要求学生借助计算器进行计算.例 2 现有某种细胞个,其中有占总数的细胞每小时分裂一次,即由 个细胞分裂成个细胞,按这种规律发展下去,经过多少小时,细胞总数可以超过个?(参考数据:).分析:现有细胞个,先考虑经过 、、、个小时后的细胞总数.解: 小时后,细胞总数为;小时后,细胞总数为;小时后,细胞总数为;小时后,细胞总数为;可见,细胞总数与时间(小时)之间的函数关系为: ,由,得,两边取以 10 为底的对数,得,∴, ,∴. 答:经过小时,细胞总数超过个.【解后反思】本例用归纳猜想的方法得出了细胞总数与时间之间的函数关系式;解类似这类的不等式,通常在不等式两边同时取对数,利用对数函数的单调性求解.这种通过观察几个特殊值的特征,从而归纳出...