江苏省新沂市第二中学 2014-2015 学年高中数学 第 27 课时 对数教案 1 苏教版必修1课题第二十课时 对数(1)课型新授课教学目标1. 理解对数的概念;2. 能够进行对数式与指数式的互化;3.会根据对数的概念求一些特殊的对数式的值。重点进行对数式与指数式的互化难点进行对数式与指数式的互化教法讲授法、讨论法、探究法教学过程教 学 内 容 个案调整教师主导活动学生主体活动 自学评价1. 对数定义:一般地,如果 ()的次幂等于, 即 ,那么 就称是以为底的对数( logarithm ),记作 ,其中,叫做对数的底数 (base of logar ithm) , 叫做真数 (prop er number) 。 着重理解对数式与指数式之间的相互转化关系,理解,与所表示的是三个量之间的同一个关系。2. 对数的性质:(1) 零和负数没有对数 ,(2)(3) 这三条性质是后面学习对数函数的基础和准备,必须熟练掌握和真正理解。3. 两种特殊的对数是① 常用对数:以 10 作底 简记为② 自 然对数:以作底(为无理数),= 2.718 28 …… , 简记为.4.对数恒等式(1)(2)追踪训练一1.将化为对数式2. 将化为指数式3. 求 值 : ( 1 ) ( 2 )答案:1. 2.3.(1)4 (2)01【精典范例】例 1:将下列指数式写成对数式:(1); (2); (3); (4).【解】(1) (2)(3) (4)例 2:.将下列对数式写成指数式:(1); (2); (3); (4).【解】(1) (2)(3) (4)点评: 两题的关键是抓住对数与指数幂的关系进行变换例 3:.求下列各式的值:⑴; ⑵; (3);(4); (5)分析:根据对数的概念,将对数式还原成指数式即可得出(1)(2)(3)(5),(4)用对数的恒等式【解】(1)由,得(2)由,得(3)由,得 4) (5)点评: 利用对数恒等式且,,应用此公式时,一定要注意公式的结构,当指数的底和对数的底是同一个数时,能用此公式化简。2 板书设计当堂作业课外作业教师札记3底数真数对数对数对数的定义对数与指数的关系关系有关概念对数函数及性质对数的运算性质