题目第九章(B)直线、平面、简单几何体平面高考要求 1 理解并会应用平面的基本性质会用斜二测的画法画水平放置的平面图形的直观图 2 掌握证明关于“线共点”、“线共面”、“点共线”的方法3 会作几何体的截面图知识点归纳 1.平面的概念:平面是没有厚薄的,可以无限延伸,这是平面最基本的属性2.平面的画法及其表示方法:① 常用平行四边形表示平面通常把平行四边形的锐角画成,横边画成邻边的两倍画两个平面相交时,当一个平面的一部分被另一个平面遮住时,应把被遮住的部分画成虚线或不画② 一般用一个希腊字母、、……来表示,还可用平行四边形的对角顶点的字母来表示如平面等3.空间图形是由点、线、面组成的点、线、面的基本位置关系如下表所示:图形符号语言文字语言(读法)点在直线上点不在直线上点在平面内点不在平面内直线、交于点直线在平面内直线与平面无公共点直线与平面交于点平面、相交于直线(平面外的直线)表示或4 平面的基本性质公理 1 如果一条直线的两点在一个平面内,那么这条直线上的所有点都在这个平面内推理模式:. 如图示:应用:是判定直线是否在平面内的依据,也可用于验证一个 面 是 否 是平面.公理 1 说明了平面与曲面的本质区别.通过直线的“直”来刻划平面的“平”,通过直线的“无限延伸”来描述平面的“无限延展性”,它既是判断直线在平面内,又是检验平面的方法.公理 2 如果两个平面有一个公共点,那么它们还有其他公共点,且所有这些公共点的集合是一条过这个公共点的直线推理模式:且且 唯一如图示: 应用:①确定两相交平面的交线位置;②判定点在直线上公理 2 揭示了两个平面相交的主要特征,是判定两平面相交的依据,提供了确定两个平面交线的方法.公理 3 经过不在同一条直线上的三点,有且只有一个平面推理模式:不共线存在唯一的平面,使得应用:①确定平面;②证明两个平面重合 “有且只有一个”的含义分两部分理解,“有”说明图形存在,但不唯一,“只有一个”说明图形如果有顶多只有一个,但不保证符合条件的图形存在,“有且只有一个”既保证了图形的存在性,又保证了图形的唯一性.在数学语言的叙述中,“确定一个”,“可以作且只能作一个”与“有且只有一个”是同义词,因此,在证明有关这类语句的命题时,要从“存在性”和“唯一性”两方面来论证.推论 1 经过一条直线和直线外的一点有且只有一个平面推理模式:存在唯一的平面,使得, 推论 2 经过两条...