1.1 命题及其关系1.1.1 四 种 命 题命题的概念观察下列语句的特点:(1)这幅画真漂亮!(2)求证是无理数;(3)菱形是平行四边形吗?(4)等腰三角形的两底角相等;(5)x>2 012;(6)若 x2=2 0122,则 x=2 012.问题:在这些语句中哪些能判断出真假,哪些不能判断出真假.提示:(1)(2)(3)(5)不能判断真假;(4)(6)能判断真假.1.能够判断真假的语句叫做命题.2.命题四种命题及其关系观察下列四个命题:(1)若两个三角形全等,则这两个三角形相似;(2)若两个三角形相似,则这两个三角形全等;(3)若两个三角形不全等,则这两个三角形不相似;(4)若两个三角形不相似,则这两个三角形不全等.问题:命题(1)与命题(2)、(3)、(4)的条件和结论之间分别有什么关系?提示:命题(1)的条件是命题(2)的结论,且命题(1)的结论是命题(2)的条件.对于命题(1)和(3).其中一个命题的条件和结论分别是另一个命题的条件的否定和结论的否定;对于命题(1)和(4).其中一个命题的条件和结论分别是另一个命题的结论的否定和条件的否定.1.四种命题的概念(1)如果一个命题的条件和结论是另一个命题的结论和条件,那么这两个命题叫做互逆命题.(2)如果一个命题的条件和结论分别是另一个命题的条件的否定和结论的否定,那么这两个命题叫做互否命题.(3)如果一个命题的条件和结论分别是另一个命题的结论的否定和条件的否定,那么这两个命题叫做互为逆否命题.2.命题的四种形式原命题:若 p,则 q;逆命题:若 q ,则 p ;1否命题:若非 p ,则非 q ;逆否命题:若非 q ,则非 p .3.四种命题之间的关系四种命题真假之间的关系观察下列命题,回答后面的问题:(1)如果两个三角形全等,那么它们的面积相等;(2)如果两个三角形的面积相等,那么它们全等;(3)如果两个三角形不全等,那么它们的面积不相等;(4)如果两个三角形面积不相等,那么它们不全等.问题 1:若把命题(1)看作原命题,这四个命题之间有什么关系?提示:(1)与(2)、(3)与(4)为互逆关系;(1)与(3)、(2)与(4)为互否关系;(1)与(4)、(2)与(3)为互为逆否关系.问题 2:判断四个命题的真假.提示:命题(1)(4)是真命题;命题(2)(3)是假命题.1.四种命题的真假性原命题逆命题否命题逆否命题真真真真真假假真假真真假假假假假2.四种命题的真假性之间的关系(1)两个命题互为逆否命题,它们有相同的真假性.(2)两个命题互为逆命题或否命题,它们的真假性没有关系.1.原命题是相对其他三种命题而言的....