一、选择题(每小题5分,共60分)1.(2013济南模拟)函数y=ln(2-x-x2)的定义域是(C)(A)(-1,2)(B)(-∞,-2)∪(1,+∞)(C)(-2,1)(D)[-2,1)解析:由题意得2-x-x2>0,即x2+x-2<0,解得-20且4-+2≤a1,解得4≤a<8.故选B.10.(2013福州市高三第一学期期末质量检查)已知g(x)为三次函数f(x)=x3+x2-2ax(a≠0)的导函数,则它们的图象可能是(D)解析:由已知得g(x)=ax2+ax-2a=a(x+2)(x-1),∴g(x)的图象与x轴的交点坐标为(-2,0),(1,0),且-2和1是函数f(x)的极值点,故选D.11.已知f(x)=alnx+x2(a>0),若对任意两个不等的正实数x1、x2都有≥2恒成立,则a的取值范围是(A)(A)[1,+∞)(B)(1,+∞)(C)(0,1)(D)(0,1]解析:由于=k≥2恒成立,所以f'(x)≥2恒成立.又f'(x)=+x,故+x≥2,又x>0,所以a≥-x2+2x,而g(x)=-x2+2x在(0,+∞)上的最大值为1,所以a≥1.故选A.12.(2013年高考重庆卷)设函数f(x)在R上可导,其导函数为f'(x),且函数y=(1-x)f'(x)的图象如图所示,则下列结论中一定成立的是(D)(A)函数f(x)有极大值f(2)和极小值f(1)(B)函数f(x)有极大值f(-2)和极小值f(1)(C)函数f(x)有极大值f(2)和极小值f(-2)(D)函数f(x)有极大值f(-2)和极小值f(2)解析:由图象可知,当x<-2时,y>0,1-x>0,所以f'(x)>0,当-20,所以f'(x)<0,当10,1-x<0,所以f'(x)<0,当x>2时,y<0,1-x<0,所以f'(x)>0.所以函数f(x)有极大值f(-2)和极小值f(2).故选D.二、填空题(每小题4分,共16分)13.(2013浙江嘉兴模拟)若f(x)=则f(f(-2))=.解析: f(-2)=|-2-1|=3,∴f(3)=log33=1,即f(f(-2))=1.答案:114.设函数f(x)的图象关于y轴对称,又已知f(x)在(0,+∞)上为减函数,且f(1)=0,则不等式<0的解集为.解析:因为函数f(x)的图象关于y轴对称,所以该函数是偶函数,又f(1)=0,所以f(-1)=0,又已知f(x)在(0,+∞)上为减函数,所以f(x)在(-∞,0)上为增函数,<0可化为xf(x)<0,所以当x>0时,解集为{x|x>1},当x<0时,解集为{x|-1