课时跟踪检测(四十五)直线与圆锥曲线一保高考,全练题型做到高考达标1.若直线y=kx+2与双曲线x2-y2=6的右支交于不同的两点,则k的取值范围是________.解析:由得(1-k2)x2-4kx-10=0.设直线与双曲线右支交于不同的两点A(x1,y1),B(x2,y2),则解得-<k<-1.即k的取值范围是.答案:2.已知椭圆C:+=1的左、右顶点分别为M,N,点P在C上,且直线PN的斜率是-,则直线PM的斜率为________.解析:设P(x0,y0),则+=1,直线PM的斜率kPM=,直线PN的斜率kPN=,可得kPM·kPN==-,故kPM=-·=3.答案:33.已知抛物线y2=2px的焦点F与椭圆16x2+25y2=400的左焦点重合,抛物线的准线与x轴的交点为K,点A在抛物线上且AK=AF,则点A的横坐标为________.解析:16x2+25y2=400可化为+=1,则椭圆的左焦点为F(-3,0),又抛物线y2=2px的焦点为,准线为x=-,所以=-3,即p=-6,即y2=-12x,K(3,0).设A(x,y),则由AK=AF得(x-3)2+y2=2[(x+3)2+y2],即x2+18x+9+y2=0,又y2=-12x,所以x2+6x+9=0,解得x=-3.答案:-34.已知双曲线-=1(a>0,b>0)上的一点到双曲线的左、右焦点的距离之差为4,若抛物线y=ax2上的两点A(x1,y1),B(x2,y2)关于直线y=x+m对称,且x1x2=-,则m=________.解析:由双曲线的定义知2a=4,得a=2,所以抛物线的方程为y=2x2.因为点A(x1,y1),B(x2,y2)在抛物线y=2x2上,所以y1=2x,y2=2x,两式相减得y1-y2=2(x1-x2)(x1+x2),不妨设x1<x2,又A,B关于直线y=x+m对称,所以=-1,故x1+x2=-,而x1x2=-,解得x1=-1,x2=,设A(x1,y1),B(x2,y2)的中点为M(x0,y0),则x0==-,y0===,因为中点M在直线y=x+m上,所以=-+m,解得m=.答案:5.已知(4,2)是直线l被椭圆+=1所截得的线段的中点,则l的方程是__________________.解析:设直线l与椭圆相交于A(x1,y1),B(x2,y2).则+=1,且+=1,两式相减并化简得=-.又x1+x2=8,y1+y2=4,所以=-,故直线l的方程为y-2=-(x-4),即x+2y-8=0.答案:x+2y-8=06.(2018·海门中学检测)如图,过抛物线y=x2的焦点F的直线l与抛物线和圆x2+(y-1)2=1交于A,B,C,D四点,则AB·DC=________.解析:不妨设直线AB的方程为y=1,联立解得x=±2,则A(-2,1),D(2,1),因为B(-1,1),C(1,1),所以AB=(1,0),DC=(-1,0),所以AB·DC=-1.答案:-17.过椭圆C:+=1(a>b>0)的左顶点A且斜率为k的直线交椭圆C于另一点B,且点B在x轴上的射影恰好为右焦点F.若0)的焦点,且与抛物线的对称轴垂直,直线l与抛物线C交于A,B两点,且AB=12,若M为抛物线C的准线上一点,则△ABM的面积为________.解析:由题意知,抛物线C的焦点坐标为,对称轴为x轴,准线为x=-.因为直线l与x轴垂直,所以AB=2p=12,p=6,又点M在抛物线C的准线上,所以点M到直线AB的距离为6,所以△ABM的面积S=×6×12=36.答案:369.(2018·镇江期末)已知椭圆C:+=1(a>b>0)的离心率为,且点在椭圆C上.(1)求椭圆C的方程;(2)若直线l交椭圆C于P,Q两点,线段PQ的中点为H,O为坐标原点,且OH=1,求△POQ面积的最大值.解:(1)由已知得解得所以椭圆C的方程为+y2=1.(2)设l与x轴的交点为D(n,0),直线l:x=my+n,P(x1,y1),Q(x2,y2),联立消去x,整理得(4+m2)y2+2mny+n2-4=0,所以y1+y2=-,y1y2=,故=-,==,即H,由OH=1,得n2=,则S△POQ=OD|y1-y2|=|n||y1-y2|.令T=n2(y1-y2)2=n2[(y1+y2)2-4y1y2]=,设t=4+m2(t≥4),则==≤=,当且仅当t=,即t=12时,S△POQ=1,所以△POQ面积的最大值为1.10.(2018·淮安高三期中)如图,在平面直角坐标系xOy中,过椭圆C:+y2=1的左顶点A作直线l,与椭圆C和y轴正半轴分别交于点P,Q.(1)若AP=PQ,求直线l的斜率;(2)过原点O作直线l的平行线,与椭圆C交于点M,N,求证:为定值.解:(1)依题意,椭圆C的左顶点A(-2,0),设直线l的...