1齐齐哈尔大学大学普通高等教育综合实践设计题目:差速器设计及驱动半轴设计学院:机电工程学院专业班级:机械082班学生姓名:姜巍学号:2008111016指导教师:刘尚成绩:时间:2010年11月15日2目录1基本数据⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯32普通圆锥齿轮差速器设计⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯32.1对称式圆锥行星齿轮差速器的差速原理⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯32.2对称式圆锥行星齿轮差速器的结构⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯42.3对称式圆锥行星齿轮差速器的设计和计算⋯⋯⋯⋯⋯⋯⋯⋯⋯42.3.1差速器齿轮的基本参数的选择⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯42.3.2差速器齿轮的几何计算⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯72.3.3差速器齿轮的强度计算⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯92.3.4差速器齿轮的材料⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯103驱动半轴的设计⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯103.1结构形式分析⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯103.2半浮式半轴杆部半径的确定⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯103.3半轴花键的强度计算⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯123.4半轴其他主要参数的选择⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯123.5半轴的结构设计及材料与热处理⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯134.参考文献⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯133差速器设计及驱动半轴设计1.所设计车辆基本参数参数名称数值单位车辆前后轴距2620mm前轮距1455mm后轮距1430mm总质量2100Kg最大功率76.0Kw最大扭矩158Nm最高车速140Km/h2.普通圆锥齿轮差速器设计汽车在行驶过程中,左右车轮在同一时间内所滚过的路程往往不等。例如,在转弯时内外两侧车轮行程显然不同,即外侧的车轮滚过的路程大于内侧车轮;汽车在不平的路面上行驶,由于轮胎气压,轮胎负荷,胎面磨损程度不同以及制造误差等影响,也会引起左右车轮因滚动半径的不同而使左右车轮行程不等。如果驱动桥的左右车轮刚性连接,则行驶时不可避免的会产生驱动轮在路面上的滑移或滑转。这不仅会加剧轮胎磨损与功率和燃料的消耗,而且可能导致操纵性能恶化。为防止这类现象发生,汽车在左右驱动轮间装有轮间差速器,从而保证驱动桥两侧车轮在行程不等的情况下具有不同角速度,满足了汽车行驶时的运动要求。差速器用来在两轴之间分配转矩,保证两输出轴有可能以不同角速度转动。差速器有多种形式,在此设计普通对称式圆锥行星齿轮差速器。2.1对称式圆锥行星齿轮差速器的差速原理图2-1差速器差速原理如图2-1所示,对称式锥齿轮差速器是一种行星齿轮机构。差速器壳3与行星齿轮轴5连成一体,形成行星架。因为它又与主减速器从动齿轮6固连在一起,固为主动件,设其角速度为0;半轴齿轮1和2为从动件,其角速度为1和2。A、B两点分别为行星齿轮4与半轴齿轮1和2的啮合点。行星4齿轮的中心点为C,A、B、C三点到差速器旋转轴线的距离均为r。当行星齿轮只是随同行星架绕差速器旋转轴线公转时,显然,处在同一半径r上的A、B、C三点的圆周速度都相等(图2-1),其值为0r。于是1=2=0,即差速器不起差速作用,而半轴角速度等于差速器壳3的角速度。当行星齿轮4除公转外,还绕本身的轴5以角速度4自转时(图),啮合点A的圆周速度为1r=0r+4r,啮合点B的圆周速度为2r=0r-4r。于是1r+2r=(0r+4r)+(0r-4r)即1+2=20(2-1)若角速度以每分钟转数n表示,则0212nnn(2-2)式(2-2)为两半轴齿轮直径相等的对称式圆锥齿轮差速器的运动特征方程式,它表明左右两侧半轴齿轮的转速之和等于差速器壳转速的两倍,而与行星齿轮转速无关。因此在汽车转弯行驶或其它行驶情况下,都可以借行星齿轮以相应转速自转,使两侧驱动车轮以不同转速在地面上滚动而无滑动。有式(2-2)还可以得知:①当任何一侧半轴齿轮的转速为零时,另一侧半轴齿轮的转速为差速器壳转速的两倍;②当差速器壳的转速为零(例如中央制动器制动传动轴时),若一侧半轴齿轮受其它外来力矩而转动,则另一侧半轴齿轮即以相同的转速反向转动。2.2对称式圆锥行星齿轮差速器的结构普通...