1.1从梯子的倾斜程度谈起【学习目标】1、掌握正切的意义,坡度的概念,用正切表示生活中物体的倾斜程度。2、培养学生分析问题、解决问题的能力以及创新能力。3、积极参与数学活动,对数学产生好奇心和求知欲。【学习重点】1、从现实情景中探索直角三角形的边、角关系。2、理解正切的意义和与生活现象--倾斜度、坡度的内在本质的统一性,密切数学与生活的联系。【学习难点】1、如何从生活的瞬间激发灵感,激发现实创造性学习新知。2、如何把正切的意义从现实生活中抽取并灵活应用。【学习过程】一、试一试:1、在图中的梯子AB和梯子EF哪个更陡,你是怎样判断的?你有几种判断方法?能与大家交流一下吗?2、在图中的梯子AB和梯子EF哪个更陡,你是怎样判断的?你有几种判断方法?能与大家交流一下吗?二、想一想:在墙角处放有一架较长的梯子,你有什么方法得到梯子的倾斜程度?与同伴进行讨论三、归纳总结:在Rt△ABC中,如果锐角A确定,那么∠A的对边与邻边的比便随之确定,这个比叫做∠A的正切。四、合作交流1、在前面的学习过程中,你认为梯子的倾斜程度与tanA有什么关系?2、如图是甲、乙两个自动扶梯,哪一个自动扶梯比较陡?五、.小结反思这节课我学会了:;我的困惑:。六、当堂测试:1、在Rt△ABC中,∠C=90°,AB=3,BC=1,则tanA=_______.2、在△ABC中,AB=10,AC=8,BC=6,则tanA=_______.3、在△ABC中,AB=AC=3,BC=4,则tanC=______.4、在Rt△ABC中,∠C是直角,∠A、∠B、∠C的对边分别是a、b、c,且a=24,c=25,求tanA、tanB的值.5、若三角形三边的比是25:24:7,求最小角的正切值.6、如图,在菱形ABCD中,AE⊥BC于E,EC=1,tanB=,求菱形的边长和四边形AECD的周长.7、已知:如图,斜坡AB的倾斜角a,且tanα=,现有一小球从坡底A处以20cm/s的速度向坡顶B处移动,则小球以多大的速度向上升高?七、自我评价八、布置作业。习题1.1项目等级ABCD掌握知识的情况参与活动的积极性给自己一句鼓励的话