12.2作轴对称图形12.2.1作轴对称图形(1)教学目标①通过动手操作体验轴对称变换.②能作出一个图形经一次或二次轴对称变换后的图形.③能利用轴对称变换设计一些简单的图案.④通过图案设计等活动,培养学生的动手操作能力、审美及数学兴趣,发展学生的空间观念.教学重点与难点重点:作一个图形经轴对称变换后的图形.难点:通过动手操作总结轴对称变换的特征.教学准备剪刀、画有一个简易风筝的半透明的纸.教学设计创设情境,引入新课多媒体介绍剪纸文化艺术:剪纸是中国最为流行的民间艺术之一,根据考古其历史可追溯到公元六世纪,甚至更早.在过去,人们经常用纸做成形态各异的物像和人像,与死者一起下葬或葬礼上燃烧,还被用作祭祀祖先和神仙所用供品的装饰物.现在,剪纸更多地是用于装饰,也可为礼品作点缀之用,甚至剪纸本身也可作为礼物赠送他人.剪纸不是用机器而是由手工做成的,常用的方法有两种:剪刀剪和刀剪.学生欣赏展示的剪纸图片教师提出问题:如此漂亮的剪纸是如何剪出的呢?相信同学们学了本节课后你也能剪出如此漂亮的剪纸!引入新课,板书课题:轴对称变换.注:让学生了解剪纸艺术,认识我国悠久灿烂的民族文化,了解我国优秀的民间手工艺术.培养学生的审美,激发学习兴趣.动手操作,感受变换请学生拿出画有一个简易风筝(如图形状)的半透明的纸,把这张纸对折后描图.学生画好后打开对折的纸.注:采用风筝图便于学生画图,在动手操作中体验轴对称变换,发现轴对称变换的特征,在实践中体验学习的快乐,也使轴对称特征的得出显得更直观,更具体.也为下面画轴对称变换后的图形提供感性认识.请学生仔细观察回答下列问题:(1)画出的图形与原来的图形有什么关系?(学生回答后,师生补充得出:画出的图形与原图形关于折痕轴对称,折痕所在直线是对称轴)(2)两个图形成轴对称有什么特征?(学生回答后,让学生找出几个对应点,并连结对应点进行验证.)注:我们可以由一个图形得到与它成轴对称的另一个图形,重复这个过程,可以得到美丽的图案.(多媒体演示如下图经多次重复后的图形),让学生感受运用所学知识设计出这些美丽的图案其实并不难!如果改变对称轴的方向和位置,结果又如何呢?让学生在刚才的纸上任意折叠,描图,打开纸.你发现了什么?学生交流后,总结归纳出:由一个平面图形可以得到它关于一条直线l对称的图形,这个图形与原图形的形状、大小完全一样;新图形上的每一点,都是原图形上的某一点关于直线l的对称点;连结任意一对对应点的线段被对称轴垂直平分.注:让学生感受改变对称轴的方向和位置,不改变轴对称变换的特征.同时通过交流,培养学生的语言表达能力,归纳能力.提升思维,运用变换老师引出轴对称变换的概念,并指出:成轴对称的两个图形中的任何一个可以看作由另一个图形经过轴对称变换后得到.一个轴对称图形也可以看作以它的一部分为基础,经轴对称变换扩展而成的.老师提出问题:刚才的风筝图,要画经过轴对称变换后的图形,除了刚才所用的描图的方法外,还有哪些方法?学生试着说一说后,出示例1:如图,已知ΔABC可以和直线l,作出与△ABC关于直线l对称的图形.通过前面的印图案、说特征等活动,使学生时经轴对称变换后的两个图形具有一定的感性认识,在具有一定认识的基础上以及根据轴对称图形的特征能发现画图方法.培养学生的发散思维.如果将△ABC的位置移至如图2、3、4时,你还能作出关于直线l对称的图形吗?画出后如何验证是否正确?图1图2图3图4注:通过练习,使学生学会运用轴对称变换画图,培养学生思维的流畅性,体验变换思想.画图后让学生归纳画图要点,学生回答后,教师总结:一个平面图形都是由一些线组成,而点动成线,所以,要画一个图形经轴对称后的图形,只要找到一些特殊点,作出这些特殊点的对称点即可.注:通过归纳要点,找到规律,形成方法.练习1:把下列图形补成关于直线l对称的图形..练习2:如图,左边的树经过几次轴对称变换,可以变成右边的树?你能设计一种变换方案吗?请学生探索,可以小组合作完成.学生回答时经过几次变换不重要,只要讲得有道理即可.注:问题的设计促使学生去分析图形,分析轴对称...