第1页(共23页)初中数学一元二次方程与二次函数基础练习与常考题和提高题(含解析)一.选择题(共20小题)1.若x=﹣2是关于x的一元二次方程x2+ax﹣a2=0的一个根,则a的值为()A.﹣1或4B.﹣1或﹣4C.1或﹣4D.1或42.一元二次方程x2﹣6x﹣5=0配方可变形为()A.(x﹣3)2=14B.(x﹣3)2=4C.(x+3)2=14D.(x+3)2=43.用配方法解一元二次方程x2+4x﹣3=0时,原方程可变形为()A.(x+2)2=1B.(x+2)2=7C.(x+2)2=13D.(x+2)2=194.方程x2﹣2x=0的根是()A.x1=x2=0B.x1=x2=2C.x1=0,x2=2D.x1=0,x2=﹣25.方程2x2=3x的解为()A.0B.C.D.0,6.一元二次方程x2﹣4x=12的根是()A.x1=2,x2=﹣6B.x1=﹣2,x2=6C.x1=﹣2,x2=﹣6D.x1=2,x2=67.方程x2+x﹣12=0的两个根为()A.x1=﹣2,x2=6B.x1=﹣6,x2=2C.x1=﹣3,x2=4D.x1=﹣4,x2=38.若关于x的一元二次方程(k﹣1)x2+4x+1=0有两个不相等的实数根,则k的取值范围是()A.k<5B.k<5,且k≠1C.k≤5,且k≠1D.k>59.关于x的一元二次方程x2+ax﹣1=0的根的情况是()A.没有实数根B.只有一个实数根C.有两个相等的实数根D.有两个不相等的实数根10.一元二次方程x2﹣4x+4=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.无法确定11.一元二次方程2x2﹣3x+1=0的根的情况是()第2页(共23页)A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根12.若关于x的一元二次方程x2+2(k﹣1)x+k2﹣1=0有实数根,则k的取值范围是()A.k≥1B.k>1C.k<1D.k≤113.已知关于x的一元二次方程x2+2x﹣(m﹣2)=0有实数根,则m的取值范围是()A.m>1B.m<1C.m≥1D.m≤114.关于x的一元二次方程x2+4x+k=0有两个相等的实根,则k的值为()A.k=﹣4B.k=4C.k≥﹣4D.k≥415.下列选项中,能使关于x的一元二次方程ax2﹣4x+c=0一定有实数根的是()A.a>0B.a=0C.c>0D.c=016.抛物线y=2(x﹣3)2+1的顶点坐标是()A.(3,1)B.(3,﹣1)C.(﹣3,1)D.(﹣3,﹣1)17.对于二次函数y=﹣+x﹣4,下列说法正确的是()A.当x>0时,y随x的增大而增大B.当x=2时,y有最大值﹣3C.图象的顶点坐标为(﹣2,﹣7)D.图象与x轴有两个交点18.抛物线y=x2+2x+3的对称轴是()A.直线x=1B.直线x=﹣1C.直线x=﹣2D.直线x=219.若二次函数y=x2+mx的对称轴是x=3,则关于x的方程x2+mx=7的解为()A.x1=0,x2=6B.x1=1,x2=7C.x1=1,x2=﹣7D.x1=﹣1,x2=720.二次函数y=x2+2x﹣3的开口方向、顶点坐标分别是()A.开口向上,顶点坐标为(﹣1,﹣4)B.开口向下,顶点坐标为(1,4)C.开口向上,顶点坐标为(1,4)D.开口向下,顶点坐标为(﹣1,﹣4)二.填空题(共9小题)21.关于x的一元二次方程x2+2x+m=0有两个相等的实数根,则m的值是.22.设x1、x2是方程x2﹣4x+m=0的两个根,且x1+x2﹣x1x2=1,则x1+x2=,第3页(共23页)m=.23.设m、n是一元二次方程x2+2x﹣7=0的两个根,则m2+3m+n=.24.将二次三项式x2+4x+5化成(x+p)2+q的形式应为.25.若x2﹣4x+5=(x﹣2)2+m,则m=.26.一元二次方程x2+3﹣2x=0的解是.27.方程(x+2)(x﹣3)=x+2的解是.28.已知A(0,3),B(2,3)是抛物线y=﹣x2+bx+c上两点,该抛物线的顶点坐标是.29.抛物线y=x2+2x+3的顶点坐标是.三.解答题(共11小题)30.解方程:x2+4x﹣1=0.31.解方程:2(x﹣3)2=x2﹣9.32.已知关于x的方程x2+mx+m﹣2=0.(1)若此方程的一个根为1,求m的值;(2)求证:不论m取何实数,此方程都有两个不相等的实数根.33.解方程:x2﹣6x﹣4=0.34.(1)解方程:x2﹣2x﹣3=0;(2)解不等式组:.35.(1)解方程:x2+2x=3;(2)解方程组:.36.已知关于x的一元二次方程mx2﹣(m+2)x+2=0.(1)证明:不论m为何值时,方程总有实数根;(2)m为何整数时,方程有两个不相等的正整数根.37.已知关于x的一元二次方程(x﹣1)(x﹣4)=p2,p为实数.(1)求证:方程有两个不相等的实数根;(2)p为何值时,方程有整数解.(直接写出三个,不需说明理由)38.关于x的两个不等式①...