课题5.1.1相交线课时本学期第课时日期课型新授主备人复备人审核人学习目标1.通过动手观察、操作、推断、交流等数学活动,进一步发展空间观念,培养识图能力、推理能力和有条理表达能力.2.在具体情境中了解邻补角、对顶角,能找出图形中的一个角的邻补角和对顶角,理解对顶角相等,并能运用它解决一些问题.重点难点重点:邻补角和对顶角的概念及对顶角相等的性质。难点:在较复杂的图形中准确辨认对顶角和邻补角。教学流程师生活动时间一、导入新课1.阅读课本P1图片及文字,了解本章要学习哪些知识?应学会哪些数学方法?培养哪些良好习惯?,2.准备一张纸片和一把剪刀,用剪刀将纸片剪开,观察剪纸过程,握紧把手时,随着两个把手之间的角逐渐变小,剪刀两刀刃之间的角引发了什么变化?.如果改变用力方向,将两个把手之间的角逐渐变大,剪刀两刀刃之间的角又发生什么了变化?.3.如果把剪刀的构造看作是两条相交的直线,剪纸过程就关系到两条相交直线所成的角的问题,阅读课本P2内容,探讨两条相交线所成的角有哪些?各有什么特征?二、新授(一)邻补角、对顶角1、观察思考:剪刀剪开纸张的过程,随着两个把手之间的角逐渐变小,剪刀刃之间的角度也相应。我们把剪刀的构成抽象为两条直线,就是我们要研究的两条相交直线所成的角的问题。2、探索活动:①任意画两条相交直线,在形成的四个角(∠1,∠2,∠3,∠4)中,两两相配共能组成对角。分别是。②分别测量一下各个角的度数,是否发现规律?你能否把他们分类?完成教材中2页表格。③归纳:邻补角、对顶角定义两条直线相交所构成的四个角中,有公共顶点邻补角。的两个角是对顶角总结:①两条直线相交所构成的四个角中,邻补角有对。对顶角有教师演示学生独立思考,并回答明确目标安静自学教师巡视解答、了解学生做题情况根据学生做题情况交流讲解5656对。②对顶角形成的前提条件是两条直线相交。5、对应练习:①下列各图中,哪个图有对顶角?(二)邻补角、对顶角的性质1、邻补角的性质:邻补角。注意:邻补角是互补的一种特殊的情况,数量上,位置上有一条。2、对顶角的性质:完成推理过程如图,∵∠1+∠2=,∠2+∠3=。(邻补角定义)∴∠1=180°-,∠3=180°-(等式性质)∴∠1=∠3(等量代换)或者∵∠1与∠2互补,∠3与∠2互补(邻补角定义),∴∠l=∠3(同角的补角相等).由上面推理可知,对顶角的性质:对顶角。三、达标测试(一)例如图,已知直线a、b相交。∠1=40°,求∠2、∠3、∠4的度数解:∠3=∠1=40°()。∠2=180°-∠1=180°-40°=140°()。∠4=∠2=140°()。你还有别的思路吗?试着写出来(二)练一练:教材3页练习(在书上完成)(三)变式训练:把例题中∠1=40°这个条件换成其他条件,而结论不变,自编几道题.变式1:把∠l=40°变为∠2-∠1=40°变式2:把∠1=40°变为∠2是∠l的3倍变式3:把∠1=40°变为∠1:∠2=2:9四、课堂小结本节课你有哪些收获?你还有哪些疑惑?预习时的疑难解决了吗10根据学生达标测试中的问题,再提醒注意问题学生思考回答教师再做补充强调10103板书教后记5.1.1相交线对顶角、邻补角的概念性质例题练习