几何问题探究——相似与比例相关问题知识点相似三角形的性质与判定;相似三角形的综合;教学目标熟练掌握图形相似的证明方法;教学重点能够灵活的运用图形的性质去证明图形中线段的关系;教学难点灵活运用相似、旋转、全等证明方法探究图形的线段问题;知识讲解考点1两条线段之间的数量关系在数量关系的猜想中,证明两条线段相等的情况较多,有时也出现证明两条线段的倍数关系,如AB=2CD或AB=CD等。在证明两条线短相等的过程中,可以根据特殊四边形的性质证明两条线段相等,也可以证明两个三角形全等,根据全等三角形的性质证明两条线段相等。证明两条线段的倍分关系时,利用构造基本图形模型证明,具体情况如下:1.利用三角形的中位线或直角三角形证明a=b;2.利用等腰三角形证明a=b;3.利用含30°角的直角三角形证明a=b等;考点2两条线段之间的位置关系在位置关系猜想中,两条线段是垂直关系还是平行关系一目了然,关键是如何证明,方法如下:1.在证明垂直关系时,由垂直定义,即两条线段相交,所夹的角是90°,一般利用直角三角形的两个锐角互余的角度进行证明;2.在证明两条线段平行时,大多是根据平行线的判定方法进行证明即可;总之证明位置关系,需要根据图形的性质,利用三角形全等进行证明,有时利用相似。在解答时,根据具体的题目条件,分解出基本图形,灵活掌握并选择方法证明。考点3相似三角形的判定①定义法:三个对应角相等,三条对应边成比例的两个三角形相似.②平行法:平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角形与原三角形相似.③判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.简述为:两角对应相等,两三角形相似.④判定定理2:如果一个三角形的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似.简述为:两边对应成比例且夹角相等,两三角形相似.⑤判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似.简述为:三边对应成比例,两三角形相似.考点4证明题常用方法归纳(1)总体思路:“等积”变“比例”,“比例”找“相似”(2)找相似:通过“横找”“竖看”寻找三角形,即横向看或纵向寻找的时候一共各有三个不同的字母,并且这几个字母不在同一条直线上,能够组成三角形,并且有可能是相似的,则可证明这两个三角形相似,然后由相似三角形对应边成比例即可证的所需的结论.(3)找中间比:若没有三角形(即横向看或纵向寻找的时候一共有四个字母或者三个字母,但这几个字母在同一条直线上),则需要进行“转移”(或“替换”),常用的“替换”方法有这样的三种:等线段代换、等比代换、等积代换.即:找相似找不到,找中间比。方法:将等式左右两边的比表示出来。①②③(4)添加辅助线:若上述方法还不能奏效的话,可以考虑添加辅助线(通常是添加平行线)构成比例.以上步骤可以不断的重复使用,直到被证结论证出为止.注:添加辅助平行线是获得成比例线段和相似三角形的重要途径。平面直角坐标系中通常是作垂线(即得平行线)构造相似三角形或比例线段。(5)比例问题:常用处理方法是将“一份”看着k;对于等比问题,常用处理办法是设“公比”为k。(6)对于复杂的几何图形,通常采用将部分需要的图形(或基本图形)“分离”出来的办法处理。例题精析例1已知:如图,若以△ABC边AB、AC为边向外作矩形ABDE和矩形ACGF,AC=kAF,AB=kAE,M、N分别为BC和DG的中点.试探究线段MN、BC之间的关系,并证明你的结论.NMBCADEFG例2如图11,在△OAB和△OCD中,∠A<90°,OB=kOD(k>1),∠AOB=∠COD,∠OAB与∠OCD互补.试探索线段AB与CD的数量关系,并证明你的结论.说明:如果你反复探索没有解决问题,可以选取⑴⑵中的一个条件⑴k=1(如图12);⑵点C在OA上,点D与点B重合(如图13).图13图12图11B(D)CAODBCAOOACBD例3已知点E在△ABC内,∠ABC=∠EBD=α,∠ACB=∠EDB=60°,∠AEB=150°,∠BEC=90°.(1)当α=60°时(如图17),①判断△ABC的形状,并说明理由;②求证:BD=AE;(2)当α=90°时(如图18),求的值....