中考数学模拟试卷一.选择题(共8小题,满分24分,每小题3分)1.比﹣5大9的数是()A.﹣10B.﹣6C.2D.42.下列图形中,对称轴条数最多的是()A.圆B.正方形C.等边三角形D.平行四边形3.下列计算正确的是()A.x3+x4=x7C.(﹣a2b3)2=﹣a4b6B.(x+1)2=x2+1D.2a2•a﹣1=2a4.如图,AB∥EF,∠C=90°,则α、β、γ的关系为()A.β=α+γB.α+β﹣γ=90°C.α+β+γ=180°D.β+γ﹣α=90°5.如图,在△ABC中,中线BE、CF相交于点G,连接EF,下列结论错误的是()A.B.C.D.6.将直线y=x向右平移2个单位长度,再向上平移2个单位长度,所得的直线的解析式是()A.y=x+1B.y=x+3C.y=x﹣1D.y=x﹣37.如图,点O为矩形ABCD的对称中心,AD>AB,点E从点B出发(不含点B)沿BC向点C运动,移动到点C停止,延长EO交AD于点F,则四边形BEDF形状的变化依次为()A.平行四边形→菱形→正方形→矩形B.平行四边形→正方形→菱形→矩形C.平行四边形→菱形→平行四边形→矩形D.平行四边形→正方形→平行四边形一矩形8.如图是抛物线型拱桥,当拱顶离水面2m时,水面宽4m.水面上升1.5m,水面宽度为()A.1mB.2mC.mD.m二.填空题(共5小题,满分15分,每小题3分)9.8的立方根是.10.八边形的对角线共有条.11.如图1是三国时期的数学家赵爽创制的一幅“勾股圆方图”.将图2的矩形分割成四个全等三角形和一个正方形,恰好能拼成这样一个“勾股圆方图”,则该矩形与拼成的正方形的周长之比为.12.若反比例函数y=的图象过点(1,1),则k的值等于.13.如图,△ABC是等边三角形,AD⊥BC于点D,DE⊥AC于点E.若AD=12,则DE=;△EDC与△ABC的面积关系是:=.三.解答题(共13小题,满分81分)14.(5分)计算:|15.(5分)求不等式16.(5分)计算:•﹣|﹣||+||.的负整数解..17.(5分)如图,在△ABC中,∠ABC=70°,∠C=30°.(1)作图:作BC边的垂直平分线分别交于AC,BC于点D,E(用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)的条件下,连接BD,求∠ABD.18.(5分)已知:BE⊥CD,BE=DE,EC=EA.求证:(1)△BEC≌△DEA;(2)DF⊥BC.19.(5分)某生产教具的厂家准备生产正方体教具,教具由塑料棒与金属球组成(一条棱用一根塑料棒,一个顶点由一个金属球镶嵌),并且根据材质优劣分为高档、中档和低档三种档次进行包装.(1)生产前,要画直观图.现在设计人员仅画出如图所示设计图,请你补全正方体模型的直观图.(2)该厂家的一个车间负责生产正方体教具,该车间共有22名工人,每个工人每天可生产塑料棒100根或者金属球80个,如果你是车间主任,你会如何分配工人成套生产正方体教具?(3)现某中学购买两种档次的正方体教具共200套(价格如表所示),若恰好用了2800元,请问该学校应该如何购买该教具?(直接写出答案即可)品种价格/元高档20中档15低档1020.(5分)现有甲、乙、丙三人组成的篮球训练小组,他们三人之间进行互相传球练习,篮球从一个人手中随机传到另外一个人手中记作传球一次,共连续传球三次.(1)若开始时篮球在甲手中,则经过第一次传球后,篮球落在丙的手中的概率是;(2)若开始时篮球在甲手中,求经过连续三次传球后,篮球传到乙的手中的概率.(请用画树状图或列表等方法求解)21.(6分)疫情期间,为了保障大家的健康,各地采取了多种方式进行预防,某地利用无人机规劝居民回家.如图,一条笔直的街道DC,在街道C处的正上方A处有一架无人机,该无人机在A处测得俯角为45°的街道B处有人聚集,然后沿平行于街道DC的方向再向前飞行60米到达E处,在E处测得俯角为37°的街道D处也有人聚集.已知两处聚集点B、D之间的距离为120米,求无人机飞行的高度AC.(参考数据:sin37°≈0.6,cos37°≈0.8,tan37°≈0.75,≈1.414.)22.(7分)为了解学生零花钱的使用情况,校团委随机调查了本校部分学生每人一周的零花钱数额,并绘制了如图甲、乙所示的两个统计图(部分未完成).请根据图中信息,回答下列问题:(1)校团委随机调查的学生人数是,请你补全条形统计图;(2)表示“50元”的扇形所占百...