北京市2013年中考数学试卷一、选择题(本题共32分,每小题4分。下列各题均有四个选项,其中只有一个是符合题意的。1.(4分)(2013•北京)在《关于促进城市南部地区加快发展第二阶段行动计划(2013﹣2015)》中,北京市提出了共计约3960亿元的投资计划,将3960用科学记数法表示应为()A.39.6×102B.3.96×103C.3.96×104D.0.396×104考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将3960用科学记数法表示为3.96×103.故选B.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.(4分)(2013•北京)﹣的倒数是()A.B.C.﹣D.﹣考点:倒数.分析:根据倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.解答:解: (﹣)×(﹣)=1,∴﹣的倒数是﹣.故选D.点评:本题主要考查倒数的定义,要求熟练掌握.需要注意的是:倒数的性质:负数的倒数还是负数,正数的倒数是正数,0没有倒数.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.3.(4分)(2013•北京)在一个不透明的口袋中装有5个完全相同的小球,把它们分别标号为1,2,3,4,5,从中随机摸出一个小球,其标号大于2的概率为()A.B.C.D.考点:概率公式.分析:根据随机事件概率大小的求法,找准两点:①符合条件的情况数目,②全部情况的总数,二者的比值就是其发生的概率的大小.解答:解:根据题意可得:大于2的有3,4,5三个球,共5个球,任意摸出1个,摸到大于2的概率是.1故选C.点评:本题考查概率的求法与运用,一般方法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=,难度适中.4.(4分)(2013•北京)如图,直线a,b被直线c所截,a∥b,∠1=∠2,若∠3=40°,则∠4等于()A.40°B.50°C.70°D.80°考点:平行线的性质.分析:根据平角的定义求出∠1,再根据两直线平行,内错角相等解答.解答:解: ∠1=∠2,∠3=40°,∴∠1=(180°﹣∠3)=(180°﹣40°)=70°, a∥b,∴∠4=∠1=70°.故选C.点评:本题考查了平行线的性质,平角等于180°,熟记性质并求出∠1是解题的关键.5.(4分)(2013•北京)如图,为估算某河的宽度,在河对岸选定一个目标点A,在近岸取点B,C,D,使得AB⊥BC,CD⊥BC,点E在BC上,并且点A,E,D在同一条直线上.若测得BE=20m,CE=10m,CD=20m,则河的宽度AB等于()A.60mB.40mC.30mD.20m考点:相似三角形的应用.分析:由两角对应相等可得△BAE∽△CDE,利用对应边成比例可得两岸间的大致距离AB.解答:解: AB⊥BC,CD⊥BC,∴△BAE∽△CDE,∴2 BE=20m,CE=10m,CD=20m,∴解得:AB=40,故选B.点评:考查相似三角形的应用;用到的知识点为:两角对应相等的两三角形相似;相似三角形的对应边成比例.6.(4分)(2013•北京)下列图形中,是中心对称图形但不是轴对称图形的是()A.B.C.D.考点:中心对称图形;轴对称图形分析:根据轴对称图形的概念先求出图形中轴对称图形,再根据中心对称图形的概念得出其中不是中心对称的图形.解答:解:A、不是轴对称图形,是中心对称图形,故本选项正确;B、是轴对称图形,也是中心对称图形,故本选项错误;C、是轴对称图形,不是中心对称图形,故本选项错误;D、不是轴对称图形,是中心对称图形,故本选项错误.故选:A.点评:本题考查了中心对称图形与轴对称图形的概念.轴对称图形:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形;中心对称图形:在同一平面内,如果把一个图形绕某一点旋转180°,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.7.(4分)(2013•北京)某中学随机地调查了50名学生,了解他们一周在校的体育锻炼时间,结果如下表所示...