1.2.2函数的表示法表示函数的方法,常用的有:解析法列表法图象法一、解析法就是用数学表达式表示两个变量之间的关系,这个表达式叫做函数的解析表达式,简称解析式。优点:1、简明、全面地概括了变量间的关系;2、可以通过解析式求出任意一个自变量的值所对应的函数值.例如:y=ax2+bx+c(a≠0),S=πr2,C=2πr,y=3x-6S=vt(v>0,t>0)二、列表法就是列出表格来表示两个变量之间的对应关系年份19901991199219931994199519961997生产总值18598.421662.534560.5466704667057494.966850.573142.7表-1国内生产总值单位:亿元如:银行里用的“利息表”等就是用列表法来表示函数关系的优点:不需要计算就可以直接看出与自变量的值相对应的数值。三、图象法:用函数图象表示两个变量之间的关系图象法的优点:能直观形象的表示出函数的变化情况。注意:图象法是今后利用数形结合思想解题的基础。例如:我国人口出生率变化曲线:例1:某种笔记本每个5元,买x(x{1,2,3,4}∈)个笔记本的钱数记为y(元),试用函数的三种表示法来表示函数y=f(x)。小结:1、作图时一定要注意函数的定义域、实线虚线、空心实心2、函数图象可以是一些孤立的点。3.如何判断一个图形是不是函数的图像?变式:函数y=f(x)的图像与直线x=m的交点个数为A.可能无数B.只有一个C.至多一个D.至少一个例2、画出函数y=|x|的图象。注意:2.分段函数是一个函数,而不是多个函数。3.分段函数的定义域和值域分别如何求?4.含绝对值的图像的画法1.含绝对值问题分类讨论是重要方法。变式1:画函数y=|x+1|+|x-2|的图像并求值域变式2:画函数的图像并求值域|32|2xxy题型一.函数图像及其应用练习.画出下列函数的图象:(1))32(13Zxxxy,(2))1(1)10(1xxxxy例3、根据条件写出函数解析式:(详见课本21页例6)注意:1.实际问题的定义域。2.分段函数是一个函数而不是多个函数,只不过在不同的区间内的表示方法不同而己。3.端点问题题型二.实际问题的函数练习:课本P23练习1题型三.分段函数的求值问题例3.已知f(x)=,(1)f[f(-2)]=?(2)若f(x)=10,则x=;)0(2)0(12xxxx能力提高已知求)0(2)0(1)(,1)(2xxxxxgxxf)]([)]3([xgfgf与小结:1、函数常用的三种表示方法2、函数图象的画法:分段函数;在某区间上的一次和二次函数;含绝对值的函数(先转化为分段函数或翻折)