第二章第十一节变化率与导数、导数的计算题组一导数的概念及运算1.设f(x)=xlnx,若f′(x0)=2,则x0=()A.e2B.eC.D.ln2解析:f′(x)=x×+1×lnx=1+lnx,由1+lnx0=2,知x0=e.答案:B2.设f0(x)=cosx,f1(x)=f0′(x),f2(x)=f1′(x),…,fn+1(x)=fn′(x),n∈N,则f2010(x)=()A.sinxB.-sinxC.cosxD.-cosx解析: f1(x)=(cosx)′=-sinx,f2(x)=(-sinx)′=-cosx,f3(x)=(-cosx)′=sinx,f4(x)=(sinx)′=cosx,…,由此可知fn(x)的值周期性重复出现,周期为4,故f2010(x)=f2(x)=-cosx.答案:D3.(2009·安徽高考)设函数f(x)=x3+x2+tanθ,其中θ∈[0,],则导数f′(1)的取值范围是()A.[-2,2]B.[,]C.[,2]D.[,2]解析: f′(x)=sinθ·x2+cosθ·x,∴f′(1)=sinθ+cosθ=2sin(θ+). θ∈[0,],∴θ+∈[,].∴sin(θ+)∈[,1],∴f′(1)∈[,2].答案:D4.设f(x)=(ax+b)sinx+(cx+d)cosx,试确定常数a,b,c,d,使得f′(x)=xcosx.解:由已知f′(x)=[(ax+b)sinx+(cx+d)cosx]′=[(ax+b)sinx]′+[(cx+d)cosx]′=(ax+b)′sinx+(ax+b)(sinx)′+(cx+d)′cosx+(cx+d)·(cosx)′=asinx+(ax+b)cosx+ccosx-(cx+d)sinx=(a-cx-d)sinx+(ax+b+c)cosx.又 f′(x)=xcosx,∴必须有即解得a=d=1,b=c=0.题组二导数的几何意义5.(2009·辽宁高考)曲线y=在点(1,-1)处的切线方程为()A.y=x-2B.y=-3x+2C.y=2x-3D.y=-2x+11解析:y′=()′=,∴k=y′|x=1=-2.l:y+1=-2(x-1),即y=-2x+1.答案:D6.若曲线y=x4的一条切线l与直线x+4y-8=0垂直,则l的方程为()A.4x-y-3=0B.x+4y-5=0C.4x-y+3=0D.x+4y+3=0解析:设与直线x+4y-8=0垂直的直线l为4x-y+m=0,即y=x4在某一点的导数为4,而y′=4x3,所以y=x4在点(1,1)处的导数为4,此点的切线为4x-y-3=0.答案:A7.(2009·宁夏、海南高考)曲线y=xex+2x+1在点(0,1)处的切线方程为________________.解析:y′=ex+x·ex+2,f′(0)=3,∴切线方程为y-1=3(x-0),∴y=3x+1.答案:y=3x+18.(2009·福建高考)若曲线f(x)=ax2+lnx存在垂直于y轴的切线,则实数a的取值范围是________.解析:f′(x)=2ax+. f(x)存在垂直于y轴的切线,∴f′(x)=0有解,即2ax+=0有解,∴a=-,∴a∈(-∞,0).答案:(-∞,0)9.已知函数f(x)=x3+x-16.(1)求曲线y=f(x)在点(2,-6)处的切线的方程;(2)直线l为曲线y=f(x)的切线,且经过原点,求直线l的方程及切点坐标;(3)如果曲线y=f(x)的某一切线与直线y=-x+3垂直,求切点坐标与切线的方程.解:(1)可判定点(2,-6)在曲线y=f(x)上. f′(x)=(x3+x-16)′=3x2+1,∴在点(2,-6)处的切线的斜率为k=f′(2)=13.∴切线的方程为y=13(x-2)+(-6),即y=13x-32.(2)法一:设切点为(x0,y0),则直线l的斜率为f′(x0)=3+1,∴直线l的方程为y=(3+1)(x-x0)++x0-16,又 直线l过点(0,0),∴0=(3+1)(-x0)++x0-16,整理得,=-8,∴x0=-2,∴y0=(-2)3+(-2)-16=-26,k=3×(-2)2+1=13.2∴直线l的方程为y=13x,切点坐标为(-2,-26).法二:设直线l的方程为y=kx,切点为(x0,y0),则k==,又 k=f′(x0)=3+1,∴=3+1,解之得x0=-2,∴y0=(-2)3+(-2)-16=-26,k=3×(-2)2+1=13.∴直线l的方程为y=13x,切点坐标为(-2,-26).(3) 切线与直线y=-+3垂直,∴切线的斜率k=4.设切点的坐标为(x0,y0),则f′(x0)=3+1=4,∴x0=±1,∴或切线方程为y=4(x-1)-14或y=4(x+1)-18.即y=4x-18或y=4x-14.+题组三导数的灵活应用10.下图中,有一个是函数f(x)=x3+ax2+(a2-1)x+1(a∈R,a≠0)的导函数f′(x)的图象,则f(-1)=()A.B.-C.D.-或解析: f′(x)=x2+2ax+(a2-1),∴导函数f′(x)的图象开口向上.又 a≠0,∴其图象必为第(3)个图.由图象特征知f′(0)=0,且-a>0,∴a=-1.故f(-1)=--1+1=-.答案:B11.(文)设P为曲线C:y=x2+2x+3上的点,且曲线C在点P处切线倾斜角的...