椭圆核心考点·精准研析考点一椭圆的定义及标准方程1.若方程+=1表示椭圆,则m的取值范围是()A.(-3,5)B.(-5,3)C.(-3,1)∪(1,5)D.(-5,1)∪(1,3)2.已知△ABC的顶点B,C在椭圆+y2=1上,顶点A是椭圆的一个焦点,且椭圆的另一个焦点在BC边上,则△ABC的周长是()A.2B.6C.4D.123.椭圆+=1的左焦点为F,直线x=t与椭圆相交于点M,N,当△FMN的周长最大时,△FMN的面积是()A.B.C.D.4.过点(,-),且与椭圆+=1有相同焦点的椭圆的标准方程为()A.+=1B.+=1C.+=1D.+=15.已知椭圆C的中心在原点,一个焦点F(-2,0),且长轴长与短轴长的比是2∶,则椭圆C的方程是________.【解析】1.选C.由方程表示椭圆知解得-3b>0).由题意得解得所以所求椭圆的标准方程为+=1.5.设椭圆C的方程为+=1(a>b>0).由题意知解得a2=16,b2=12,所以椭圆C的方程为+=1.答案:+=11.椭圆定义的应用(1)椭圆定义的应用主要有两个方面:一是判断平面内动点的轨迹是否为椭圆;二是利用定义求焦点三角形的周长、面积,弦长、最值和离心率等.(2)椭圆的定义式必须满足2a>|F1F2|.2.焦点三角形的结论椭圆上的点P(x0,y0)与两焦点F1,F2构成的△PF1F2叫做焦点三角形.如图所示,设∠F1PF2=θ.(1)4c2=|PF1|2+|PF2|2-2|PF1||PF2|cosθ.(2)焦点三角形的周长为2(a+c).(3)=|PF1||PF2|sinθ=b2tan=c|y0|,当|y0|=b,即P为短轴端点时,取得最大值,为bc.3.求椭圆的标准方程的方法(1)求椭圆的标准方程多采用定义法和待定系数法.(2)利用定义法求椭圆方程,要注意条件2a>|F1F2|;利用待定系数法要先定形(焦点位置),再定量,也可把椭圆方程设为mx2+ny2=1(m>0,n>0,m≠n)的形式.4.利用待定系数法求椭圆标准方程的四个步骤考点二弦及弦中点问题【典例】1.已知椭圆+y2=1,过点P且被P点平分的弦所在直线的方程为________.2.焦点是F(0,5),并截直线y=2x-1所得弦的中点的横坐标是的椭圆的标准方程为______________.世纪金榜导学号【解题导思】序号联想解题1一看到弦的中点(即中点弦)问题,即联想到点差法2当题目中出现弦的中点并出现中点的横坐标(或纵坐标)时,立即想到点差法(也可考虑联立方程)【解析】1.设弦的两端点为A(x1,y1),B(x2,y2),中点为(x0,y0),则有两式作差得+(y2-y1)(y2+y1)=0,因为x2+x1=2x0,y2+y1=2y0,=kAB,代入后求得kAB=-=-,所以弦所在直线的方程为y-=-,即x+3y-2=0.答案:x+3y-2=02.设所求的椭圆方程为+=1(a>b>0),直线被椭圆所截弦的端点为A(x1,y1),B(x2,y2).由题意,可得弦AB的中点坐标为,且=,=-.将A,B两点坐标代入椭圆方程中,得两式相减并化简,得=-×=-2×=3,所以a2=3b2,又c2=a2-b2=50,所以a2=75,b2=25,故所求椭圆的标准方程为+=1.答案:+=11.椭圆中弦及弦中点问题的类型及解决策略常见类型解决策略①过定点,定点为弦中点;②平行弦中点的轨迹;③过定点的弦的中点轨迹根与系数的关系:直线与椭圆方程联立,消元,利用根与系数的关系表示中点坐标点差法:利用弦两端点适合椭圆方程,作差构造中点与斜率的关系2.椭圆中弦及弦中点问题的注意事项(1)合理消元,消元时可以选择消去y,也可以消去x.(2)利用弦长公式、点到直线的距离公式等将所求量表示出来.(3)涉及弦中点的问题常用“点差法”解决.1.已知直线l:y=k(x-1)与椭圆C:+y2=1交于不同的两点A,B,AB中点横坐标为,则k=________.【解析】设A(x1,y...