分子的立体结构一、教材分析在第二节“分子的立体结构”中,首先按分子中所含的原子数直间给出了三原子、四原子和五原子分子的立体结构,并配有立体结构模型图。为什么这些分子具有如此的立体结构呢?教科书在本节安排了“价层电子对互斥模型”和“杂化轨道理论”来判断简单分子和离子的立体结构。在介绍这两个理论时要求比较低,文字叙述比较简洁并配有图示。还设计了“思考与交流”、“科学探究”等内容让学生自主去理解和运用这两个理论。第1课时一、三维目标1、知识与技能认识共价分子的多样性和复杂性;初步认识价层电子对互斥模型;能用VSEPR模型预测简单分子或离子的立体结构2、过程与方法复习化学键的概念,能用电子式表示常见物质的离子键或共价键的形成过程3、情感态度与价值观培养学生严谨认真的科学态度和空间想象能力二、教学重点分子的立体结构;利用价层电子对互斥模型预测分子的立体结构三、教学难点价层电子对互斥理论四、教学策略首先按分子中所含的原子数直间给出了三原子、四原子和五原子分子的立体结构,并配有立体结构模型图。为什么这些分子具有如此的立体结构呢?教科书在本节安排了“价层电子对互斥模型”和“杂化轨道理论”来判断简单分子和离子的立体结构。在介绍这两个理论时要求比较低,文字叙述比较简洁并配有图示。还设计了“思考与交流”、“科学探究”等内容让学生自主去理解和运用这两个理论。五、教学准备多媒体、黑板、教材、学案六、教学环节1、课堂导入[复习]共价键的三个参数。[过渡]我们知道许多分子都具有一定的空间结构,如:„„,是什么原因导致了分子的空间结构不同,与共价键的三个参数有什么关系?我们开始研究分子的立体结构。2、课堂讲授[板书]第二节分子的立体结构一、形形色色的分子[讲]大多数分子是由两个以上原子构成的,于是就有了分子中的原子的空间关系问题,这就是所谓“分子的立体结构”。例如,三原子分子的立体结构有直线形和V形两种。如C02分子呈直线形,而H20分子呈V形,两个H—O键的键角为105°。[投影][板书]1、三原子分子立体结构:有直线形C02、CS2等,V形如H2O、S02等。[讲]大多数四原子分子采取平面三角形和三角锥形两种立体结构。例如,甲醛(CH20)分子呈平面三角形,键角约120°;氨分子呈三角锥形,键角107°。[投影][板书]2、四原子分子立体结构:平面三角形:如甲醛(CH20)分子等,三角锥形:如氨分子等。[讲]五原子分子的可能立体结构更多,最常见的是正四面体形,如甲烷分子的立体结构是正四面体形,键角为109°28。投影][板书]3、五原子分子立体结构:正四面体形如甲烷、P4等。[讲]分子世界是如此形形色色,异彩纷呈,美不胜收,常使人流连忘返.分子的立体结构与其稳定性有关。例如,S8分子像顶皇冠,如果把其中一个向上的硫原子倒转向下,尽管也可以存在,却不如皇冠式稳定;又如,椅式C6H12比船式稳定。[投影][设问]分子的空间结构我们看不见,那么科学家是怎样测定的呢?[投影][阅读]科学视野—分子的立体结构是怎样测定的?肉眼不能看到分子,那么,科学家是怎样知道分子的形状的呢?早年的科学家主要靠对物质的宏观性质进行系统总结得出规律后进行推测,如今,科学家已经创造了许许多多测定分子结构的现代仪器,红外光谱就是其中的一种。分子中的原子不是固定不动的,而是不断地振动着的。所谓分子立体结构其实只是分子中的原子处于平衡位置时的模型。当一束红外线透过分子时,分子会吸收跟它的某些化学键的振动频率相同的红外线,再记录到图谱上呈现吸收峰。通过计算机模拟,可以得知各吸收峰是由哪一个化学键、哪种振动方式引起的,综合这些信息,可分析出分子的立体结构。[讲]分子中原子不是固定不动的,而是不断地振动着的。所谓分子立体结构其实只是分子中的原子处于平衡位置时的模型。当一束红外线透过分子时,分子会吸收跟它的某些化学键的振动频率相同的红外线,再记录到图谱上呈现吸收峰。通过计算机模拟,可以得知各吸收峰是由哪一个化学键、哪种振动方式引起的,结合这些信息,可分析出分子的立体结构。[板书]4、测分子体结构:红外光谱仪→吸收峰→分析。[过渡]C02和H20都是三原子...