用样本的频率分布估计总体分布(二)画频率分布直方图的步骤:第一步:求极差:(数据组中最大值与最小值的差距)第二步:决定组距与组数:(强调取整)第三步:将数据分组(给出组的界限)第四步:列频率分布表.(包括分组、频数、频率、频率/组距)第五步:画频率分布直方图(在频率分布表的基础上绘制,横坐标为样本数据尺寸,纵坐标为频率/组距.)组距:指每个小组的两个端点的距离,组距组数:将数据分组,当数据在100个以内时,按数据多少常分5-12组。4.18.20.5极差组数=组距回忆:绘制频率分布直方图有哪几个步骤呢?(一)频率分布折线图:画好频率分布图后,我们把频率分布直方图中各小长方形上端连接起来,得到的图形.00.10.20.30.40.50.60.511.522.533.544.5画出频率分布折线图.频率/组距月均用水量/t(取组距中点,并连线)0.080.160.30.440.50.30.10.080.04在样本频率分布直方图中,当样本容量增加,作图时所分的组数增加,组距减少,相应的频率折线图会越来越接近于一条光滑曲线,统计中称这条光滑曲线为总体密度曲线.它能够精确地反映了总体在各个范围内取值的百分比,它能给我们提供更加精细的信息.总体密度曲线:月均用水量/t频率组距0ab月均用水量/t频率组距0ab1.对于任何一个总体,它的密度曲线是不是一定存在?它的密度曲线是否可以被非常准确地画出来?思考2.图中阴影部分的面积表示什么?2.总体在范围(a,b)内取值的百分比月均用水量/t频率组距0ab1.实际上,尽管有些总体密度曲线是客观存在的,但一般很难像函数图象那样准确地画出来,我们只能用样本的频率分布对它进行估计,一般来说,样本容量越大,这种估计就越精确思考:当总体中的个体数比较少或样本数据不密集时,是否存在总体密度曲线?为什么?不存在,因为组距不能任意缩小.(二)茎叶图当数据是两位有效数字时,用中间的数字表示十位数,即第一个有效数字,两边的数字表示个位数,即第二个有效数字,它的中间部分像植物的茎,两边部分像植物茎上长出来的叶子,因此通常把这样的图叫做茎叶图例:甲乙两人比赛得分记录如下:甲:13,51,23,8,26,38,16,33,14,28,39乙:49,24,12,31,50,31,44,36,15,37,25,36,39用茎叶图表示两人成绩,说明哪一个成绩好.甲乙0123452,55,41,6,1,6,7,94,9084,6,33,6,83,8,91叶茎叶(二).茎叶图(一种被用来表示数据的图)画茎叶图的步骤:1.将每个数据分为茎(高位)和叶(低位)两部分,在此例中,茎为十位上的数字,叶为个位上的数字;2.将最小茎和最大茎之间的数按大小次序排成一列,写在左(右)侧;3.将各个数据的叶按大小次序写在其茎右(左)侧.茎叶08134523683389451(1)用茎叶图表示数据有两个优点:一是从统计图上没有原始数据信息的损失,所有数据信息都可以从茎叶图中得到;二是茎叶图中的数据可以随时记录,随时添加,方便记录与表示。(2)茎叶图只便于表示两位有效数字的数据,而且茎叶图只方便记录两组的数据,两个以上的数据虽然能够记录,但是没有表示两个记录那么直观,清晰。茎叶图的特征:思考:对任意一组样本数据,是否都适合用茎叶图表示?为什么?不适合样本容量很大或茎、叶不分明的样本数据.频数茎叶2107,811112,7,6,3,6,8,6,7,2,2,013126,8,4,2,7,8,6,1,0,4,3,2,04134,2,3,0下表一组数据是某车间30名工人加工零件的个数,设计一个茎叶图表示这组数据,并说明这一车间的生产情况.134112117126128124122116113107116132127128126121120118108110133130124116117123122120112112练习:练习:1.右面是甲、乙两名运动员某赛季一些场次得分的茎叶图,据图可知()甲012345乙824719936250328754219441AA.甲运动员的成绩好于乙运动员B.乙运动员的成绩好于甲运动员C.甲、乙两名运动员的成绩没有明显的差异D.甲运动员的最低得分为0分2.2002-2003赛季,一球员在NBA某些场次的比赛所得篮板球数分别为:16,6,3,5,12,8,13,6,10,3,19,14,9,7,10,10,9,11,6,11,12,14,8,6,10,5,10,11,13,9,10,10,7,6,11,12,17,4,12,8,10,12,9,15,15,12,13,18,8,16,请制作这些数据的茎叶图.01334556666677888899990000000011112222223334455667893.下面是甲、乙两名运动员某赛季一些场次得分的茎叶图:甲...