电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

几个常用函数的导数VIP免费

几个常用函数的导数_第1页
1/14
几个常用函数的导数_第2页
2/14
几个常用函数的导数_第3页
3/14
1.2.1几个常用函数的导数复习导数的几何意义.对于函数y=f(x),如何求它的导数呢?导数的定义1.函数y=f(x)=c的导数y=cyxO,因0xccxxfxxfxy.00limlim'00xxxyy所以y=0表示函数y=x图象上每一点处的切线的斜率都为0.若y=c表示路程关于时间的函数,则y=0则为某物体的瞬时速度始终为0,即一直处于静止状态.从几何的角度理解:从物理的角度理解:2.函数y=f(x)=x的导数,因为1xxxxxxfxxfxy.11limlim'00xxxyy所以y=xyxOy=1表示函数y=x图象上每一点处的切线斜率都为1.若y=x表示路程关于时间的函数,则y=1可以解释为某物体做瞬时速度为1的匀速运动.从几何的角度理解:从物理的角度理解:探究在同一平面直角坐标系中,画出函数y=2x,y=3x,y=4x的图象,并根据导数定义,求它们的导数.(1)从图象上看,它们的导数分别表示什么?(2)这三个函数中,哪一个增加得最快?哪一个增加得最慢?(3)函数y=kx(k≠0)增(减)的快慢与什么有关?21-1-2-2-112xyy=xy=2xy=3xy=4x函数y=f(x)=kx的导数xxfxxfxy因为.limlim'00kkxyyxx所以,kxkxxkkxxkxxxk3.函数y=f(x)=x2的导数xxxxxxfxxfxy22因为xxxxxx2222xx2.22limlim'00xxxxyyxx所以y=x2yxOy=2x表示函数y=x2图象上点(x,y)处切线的斜率为2x,说明随着x的变化,切线的斜率也在变化.从导数作为函数在一点的瞬时变化率来看,y=2x表明:当x<0时,随着x的增加,y=x2减少得越来越慢;当x>0时,随着x的增加,y=x2增加得越来越快.若y=x2表示路程关于时间的函数,则y=2x可以解释为某物体作变速运动,它在时刻x的瞬时速度为2x.从几何的角度理解:从物理的角度理解:4.函数y=f(x)=的导数x1xxxxxxfxxfxy11因为,xxxxxxxxxx21.11limlim'2200xxxxxyyxx所以探究画出函数的图象.根据图象,描述它的变化情况,并求出曲线在点(1,1)处的切线方程.xy121-1-2-2-112xy5.函数y=f(x)=的导数xxxxxxxfxxfxy因为xxxxxxxxxx,xxx1.211limlim'00xxxxxyyxx所以小结1.若f(x)=c(c为常数),则f(x)=0;2.若f(x)=x,则f(x)=1;3.若f(x)=x2,则f(x)=2x;;则若21',1.4xxfxxf.21',.5xxfxxf则若)(1是常数xx练习:1求下列幂函数的导数325)3(1)2(1xyxyxy)().2(,)1(3fxy求已知213333)(xxxy解:12)2(3)2(2f312222)(xxxy解:2722712)3(2)3(3f).3(,1)2(2fxy求已知2:

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

几个常用函数的导数

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部