电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

用函数的观点看一元二次方程()VIP免费

用函数的观点看一元二次方程()_第1页
1/2
用函数的观点看一元二次方程()_第2页
2/2
旦马乡初级中学教学方案授课题目22.2用函数的观点看一元二次方程(1)授课班级九年级授课时间2016.授课教师武学鹏教学目标及教学过程教学目标知识与能力目标通过探索,使学生理解二次函数与一元二次方程、一元二次不等式之间的联系。使学生能够运用二次函数及其图象、性质解决实际问题,提高学生用数学的意识。方法与情感目标进一步培养学生综合解题能力,渗透数形结合思想。教学重点使学生理解二次函数与一元二次方程、一元二次不等式之间的联系,能够运用二次函数及其图象、性质去解决实际问题。教学难点进一步培养学生综合解题能力,渗透数形结合的思想。学法指导预习,思考,练习。教具运用常规教具教学流程师生活动补充与反思一、探索问题问题1:某公园要建造一个圆形的喷水池,在水池中央垂直于水面竖一根柱子,上面的A处安装一个喷头向外喷水。连喷头在内,柱高为0.8m。水流在各个方向上沿形状相同的抛物线路径落下,如图(1)所示。根据设计图纸已知:如图(2)中所示直角坐标系中,水流喷出的高度y(m)与水平距离x(m)之间的函数关系式是y=-x2+2x+。(1)喷出的水流距水平面的最大高度是多少?(2)如果不计其他的因素,那么水池至少为多少时,才能使喷出的水流都落在水池内?教学要点如何将文学语言转化为数学语言,得出问题(1)就是求函数y=-x2+2x+最大值,问题(2)就是求如图(2)B点的横标;问题2:一个涵洞成抛物线形,它的截面如图(3)所示,现测得,当水面宽AB=1.6m时,涵洞顶点与水面的距离为2.4m。这时,离开水面1.5m处,涵洞宽ED是多少?是否会超过1m?教学要点根据已知条件,要求ED的宽,只要求出FD的长度。在如图(3)的直角坐标系中,即只要求出D点的横坐标。因为点D在涵洞所成的抛物线上,又由已知条件可得到点D的纵坐标,所以利用抛物线的函数关系式可以进一步算出点D的横坐标。解:以AB的垂直平分线为y轴,以过点O的y轴的垂线为x轴,建立直角坐标系。这时,涵洞的横截面所成抛物线的顶点在原点,对称轴为y轴,开口向下,所以可设它的函数关系式为:y=ax2(a<0)(1)因为AB与y轴相交于C点,所以CB==0.8(m),又OC=2.4m,所以点B的坐标是(0.8,-2.4)。因为点B在抛物线上,将它的坐标代人(1),得-2.4=a×0.82所以:a=-因此,函数关系式是y=-x2(2)问题3:画出函数y=x2-x-3/4的图象,根据图象回答问题。(1)图象与x轴交点的坐标是什么;(2)当x取何值时y=0?这里x的取值与方程x2-x-=0有什么关系?教学要点1.按列表、描点、连线等步骤画出函数y=x2-x-的图象。2.回答(1)提出的问题:图象与x轴交点的坐标分别是(-,0)和(,0)。3.对于问题(3),达成共识:从“形”的方面看,函数y=x2-x-的图象与x轴交点的横坐标,即为方程x2-x-=0的解;从“数”的方面看,当二次函数y=x2-x-的函数值为0时,相应的自变量的值即为方程x2-x-=0的解。更一般地,函数y=ax2+bx+c的图象与x轴交点的横坐标即为方程ax2+bx+c=0的解;当二次函数y=ax2+bx+c的函数值为0时,相应的自变量的值即为方程ax2+bx+c=0的解,这一结论反映了二次函数与一元二次方程的关系。二、试一试根据问题3的图象回答下列问题。作业设计

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

用函数的观点看一元二次方程()

您可能关注的文档

精品文档+ 关注
实名认证
内容提供者

中小学学习资料大全

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部