22.1二次函数的图象和性质22.1.2二次函数y=ax2的图象和性质R·九年级上册新课导入导入课题问题1:用描点法画函数图象的一般步骤是什么?问题2:我们学过的一次函数的图象是什么图形?那么,二次函数的图象会是什么样的图形呢?这节课我们画最简单的二次函数y=ax2的图象.列表、描点、连线一条直线(1)用描点法画二次函数y=ax2的图象,知道抛物线y=ax2是轴对称图形,知道抛物线y=ax2的开口方向与a的符号有关.(2)能根据图象说出抛物线y=ax2的开口方向、对称轴、顶点坐标,能根据a的符号说出顶点是抛物线的最高点还是最低点.理解抛物线的相关概念学习难点学习重点学习目标x···-3-2-10123···y=x2···9410149···先画二次函数y=x2的图象1.列表:在y=x2中,自变量x可以是任意实数,列表表示几组对应值:推进新课知识点1二次函数y=ax2的图象的画法2.描点:根据表中x,y的数值在坐标平面中描点(x,y),3.连线:再用平滑曲线顺次连接各点,就得到y=x2的图象。369yO-33x369yO-33x可以看出,二次函数y=x2的图象是一条曲线,它的形状类似于投篮时或掷铅球时球在空中所经过的路线,只是这条曲线开口向上。事实上,二次函数的图象都是抛物线,它们的开口或者向上或者向下.一般地,二次函数y=ax2+bx+c(a≠0)的图象叫做抛物线y=ax2+bx+c.抛物线y=x2知识点2二次函数y=ax2的图象和性质369yO-33x函数y=x2的图象开口______.向上抛物线与对称轴的交点叫做抛物线的顶点。这条抛物线关于y轴对称,y轴就是它的对称轴.顶点坐标是________.顶点是图象的最____点.(0,0)低在抛物线y=x2上任取一点(m,m2),因为它关于y轴的对称点(-m,-m2)也在抛物线y=x2上,所以抛物线y=x2关于y轴对称。在抛物线y=x2上任取一点(m,m2),因为它关于y轴的对称点(-m,-m2)也在抛物线y=x2上,所以抛物线y=x2关于y轴对称。特征实际上,每条抛物线都有对称轴,抛物线与对称轴的交点叫做抛物线的顶点.顶点是抛物线的最低点或最高点.369yO-33x当x<0(在对称轴的左侧)时,y随着x的增大而减小.当x>0(在对称轴的右侧)时,y随着x的增大而增大.单调性268y4O-22x4-4解:分别填表,再画出它们的图象,如图x···-4-3-2-101234······84.520.500.524.58···yx212x···-2-1.5-1-0.500.511.52···y=2x2···84.520.500.524.58···例1在同一直角坐标系中,画出函数,y=2x2的图象。yx212212yxy=2x2268y4O-22x4-4212yxy=2x2开口都向上;对称轴都是y轴;a值越大,抛物线的开口越小.顶点都是原点(0,0),顶点是抛物线的最低点;增减性相同:当x<0时,y随x增大而减小;当x>0时,y随x增大而增大.函数的图象与函数y=x2的图象相比,有什么共同点和不同点?yxyx22122,思考268y4O-22x4-4212yxy=2x2一般地,当a>0时,抛物线y=ax2的开口向上,对称轴是y轴,顶点是原点,顶点是抛物线的最低点,a越大,抛物线的开口越小.归纳-8-4-2y-6O-22x4-4画出函数的图象,并考虑这些抛物线有什么共同点和不同点.yx,yx,yx222122探究x···-4-3-2-101234···y=-x2···-16-9-4-10-1-4-9-16···x···-4-3-2-101234···y=-2x2···-32-18-8-20-2-8-18-32···x···-4-3-2-101234······-8-20-2-8···yx212212yxy=-2x2y=-x212129292-8-4-2y-6O-22x4-4212yxy=-2x2y=-x2开口都向下;对称轴都是y轴;a值越小,抛物线的开口越小.顶点都是原点(0,0),顶点是抛物线的最高点;增减性相同:当x<0时,y随x增大而增大;当x>0时,y随x增大而减小.共同点和不同点一般地,当a<0时,抛物线y=ax2的开口向下,对称轴是y轴,顶点是原点,顶点是抛物线的最高点,a越小,抛物线的开口越小.1.二次函数的图象都是抛物线.2.抛物线y=ax2的图象性质:(2)当a>0时,抛物线的开口向上,顶点是抛物线的最低点;当a<0时,抛物线的开口向下,顶点是抛物线的最高点;|a|越大,抛物线的开口越小.(1)抛物线y=ax2的对称轴是y轴,顶点是原点.212yxy=-2x2y=-x2268y4212yxy=2x2-8-4-2-6O-22x4-4小结数形结合知识点3二次函数y=ax2的实际应用二次函数y=ax2是刻画客观世界许多现象的一种重要...