专题10圆锥曲线易错点1混淆“轨迹”与“轨迹方程”如图,已知点,直线,P为平面上的动点,过P作直线l的垂线,垂足为点Q,且,求动点P的轨迹.【错解】设点P(x,y),则Q(-1,y),由,得(x+1,0)·(2,-y)=(x-1,y)·(-2,y),化简得y2=4x.【错因分析】错解中求得的是动点的轨迹方程,而不是轨迹,混淆了“轨迹”与“轨迹方程”的区别.【试题解析】设点P(x,y),则Q(-1,y),由,得(x+1,0)·(2,-y)=(x-1,y)·(-2,y),化简得y2=4x.故动点P的轨迹为焦点坐标为(1,0)的抛物线.【参考答案】动点P的轨迹为焦点坐标为(1,0)的抛物线.1.求轨迹方程时,若题设条件中无坐标系,则需要先建立坐标系,建系时,尽量取已知的相互垂直的直线为坐标轴,或利用图形的对称性选轴,或使尽可能多的点落在轴上.求轨迹方程的方法有:(1)直接法:直接法求曲线方程时最关键的就是把几何条件或等量关系翻译为代数方程,要注意翻译的等价性.(2)定义法:求轨迹方程时,若动点与定点、定直线间的等量关系满足圆、椭圆、双曲线、抛物线的定义,则可直接根据定义先确定轨迹类型,再写出其方程.(3)相关点法:动点所满足的条件不易得出或转化为等式,但形成轨迹的动点却随另一动点的运动而有规律地运动,而且动点Q的轨迹方程为给定的或容易求得的,则可先将,表示成关于x,y的式子,再代入Q的轨迹方程整理化简即得动点P的轨迹方程.(4)参数法:若动点坐标之间的关系不易直接找到,且无法判断动点的轨迹,也没有明显的相关动点可用,但较易发现(或经分析可发现)这个动点的运动受到另一个变量的制约,即动点中的x,y分别随另一变量的变化而变化,我们可称这个变量为参数,建立轨迹的参数方程,这种求轨迹方程的方法叫做参数法.2.求轨迹方程与求轨迹是有区别的,若是求轨迹,则不仅要求出方程,而且还要说明和讨论所求轨迹是什么样的图形,即说出图形的形状、位置等.1.在直角坐标系中,以O为圆心的圆与直线相切.(1)求圆O的方程;(2)圆O与x轴相交于A,B两点,圆O内的动点P使成等比数列,求P点的轨迹方程,并指出轨迹的形状.【答案】(1)(2)P点的轨迹方程为或),P点的轨迹为双曲线在圆内的一部分.(2)由(1)设由成等比数列得,,化简得.由于点P在圆O内,故,由此得或.所以P点的轨迹方程为或),P点的轨迹为双曲线在圆内的一部分.易错点2求轨迹方程时忽略变量的取值范围已知曲线C:y=和直线l:y=kx(k≠0),若C与l有两个交点A和B,求线段AB中点的轨迹方程.【错解】依题意,由分别消去x、y得,(k2-1)x2+2x-2=0,①(k2-1)y2+2ky-2k2=0.②设AB的中点为P(x,y),则在①②中分别有,故线段AB中点的轨迹方程为.【错因分析】消元过程中,由于两边平方,扩大了变量y的允许值范围,故应对x,y加以限制.【试题解析】依题意,由,分别消去x、y得,(k2-1)x2+2x-2=0,①(k2-1)y2+2ky-2k2=0.②设AB的中点为P(x,y),则在①②中分别有又对②应满足,解得2,y>.所以所求轨迹方程是x2-y2-x=0(x>2,y>).【参考答案】轨迹方程是x2-y2-x=0(x>2,y>).1.一般地,在直角坐标系中,如果某曲线C(看作点的集合或适合某种条件的点的轨迹)上的点与一个二元方程的实数解建立了如下的关系:(1)曲线上点的坐标都是这个方程的解;(2)以这个方程的解为坐标的点都是曲线上的点.那么,这个方程叫做曲线的方程;这条曲线叫做方程的曲线.2.要注意有的轨迹问题包含一定的隐含条件,由曲线和方程的概念可知,在求曲线时一定要注意它的“完备性”和“纯粹性”,即轨迹若是曲线的一部分,应对方程注明x的取值范围,或同时注明x,y的取值范围.2.已知的三边a、b、c(a>b>c)成等差数列,A、C两点的坐标分别是(-1,0)、(1,0),求顶点B的轨迹方程.【答案】+=1(-2b>c,使变量x的范围扩大,从而导致错误.另外,注意当点B在x轴上时,A、B、C三点不能构成三角形.易错点3忽略椭圆定义中的限制条件若方程表示椭圆,则实数k的取值范围为________________.【错解】由,可得,所以实数k的取值范围为(6,8).【错因...