专题10圆锥曲线易错点1忽略椭圆定义中的限制条件若方程表示椭圆,则实数k的取值范围为________________.【错解】由,可得,所以实数k的取值范围为(6,8).【错因分析】忽略了椭圆标准方程中a>b>0这一限制条件,当a=b>0时表示的是圆的方程.【试题解析】由,可得且,所以实数k的取值范围为(6,7)∪(7,8).【方法点睛】准确理解椭圆的定义,明确椭圆定义中的限制条件,才能减少解题过程中的失误,从而保证解题的正确性.【参考答案】(6,7)∪(7,8).平面上到两定点的距离的和为常数(大于两定点之间的距离)的点的轨迹是椭圆.这两个定点叫做椭圆的焦点,两个定点之间的距离叫做椭圆的焦距,记作.定义式:.要注意,该常数必须大于两定点之间的距离,才能构成椭圆.1.已知F1,F2为两定点,|F1F2|=6,动点M满足|MF1|+|MF2|=6,则动点M的轨迹是A.椭圆B.直线C.圆D.线段【答案】D平面上到两定点的距离的和为常数(大于两定点之间的距离)的点的轨迹是椭圆.若忽略了椭圆定义中|F1F2|<2a这一隐含条件,就会错误地得出点M的轨迹是椭圆.易错点2忽略对椭圆焦点位置的讨论已知椭圆的标准方程为,并且焦距为8,则实数k的值为_____________.【错解1】因为2c=8,所以c=4,由椭圆的标准方程知a2=36,b2=k2,a2=b2+c2,所以36=k2+42,即k2=20,又k>0,故.【错解2】因为2c=8,所以c=4,由椭圆的标准方程知a2=k2,b2=36,a2=b2+c2,所以k2=36+42,即k2=52,又k>0,故.【错因分析】当椭圆的焦点位置不确定时,求椭圆的标准方程需要进行分类讨论,而错解中忽略了对椭圆的焦点位置的讨论,从而导致错误.【试题解析】因为2c=8,所以c=4,①当焦点在x轴上时,由椭圆的标准方程知a2=36,b2=k2,a2=b2+c2,所以36=k2+42,即k2=20,又k>0,故;②当焦点在y轴上时,由椭圆的标准方程知a2=k2,b2=36,a2=b2+c2,所以k2=36+42,即k2=52,又k>0,故.综上,或.【方法点睛】涉及椭圆方程的问题,如果没有指明椭圆焦点所在的位置,一般都会有两种可能的情形,不能顺着思维定式,想当然地认为焦点在x轴上或y轴上去求解.【参考答案】或.1.解决已知椭圆的焦点位置求方程中的参数问题,应注意结合焦点位置与椭圆方程形式的对应关系求解.对于方程,①表示焦点在x轴上的椭圆且;②表示焦点在y轴上的椭圆且;③表示椭圆且.对于形如:Ax2+By2=1(其中A>0,B>0,A≠B)的椭圆的方程,其包含焦点在x轴上和在y轴上两种情况,当B>A时,表示焦点在x轴上的椭圆;当B<A时,表示焦点在y轴上的椭圆.2.求椭圆的方程有两种方法:(1)定义法.根据椭圆的定义,确定a2,b2的值,结合焦点位置可写出椭圆方程.(2)待定系数法.这种方法是求椭圆的方程的常用方法,其一般步骤是:第一步,做判断.根据条件判断椭圆的焦点在x轴上,还是在y轴上,还是两个坐标轴都有可能(这时需要分类讨论).第二步,设方程.根据上述判断设方程为或.第三步,找关系.根据已知条件,建立关于的方程组(注意椭圆中固有的等式关系).第四步,得椭圆方程.解方程组,将解代入所设方程,即为所求.3.用待定系数法求椭圆的方程时,要“先定型,再定量”,不能确定焦点的位置时,需要分焦点在x轴上和在y轴上两种情况讨论,也可设椭圆的方程为Ax2+By2=1(其中A>0,B>0,A≠B).求椭圆的标准方程的方法可以采用待定系数法,此时要注意根据焦点的位置选择椭圆的标准方程;也可以利用椭圆的定义及焦点位置或点的坐标确定椭圆的标准方程.2.已知椭圆的中心在原点,对称轴是坐标轴,离心率e=,且过点P(2,3),求此椭圆的标准方程.【答案】+=1或+=1.故所求椭圆的标准方程为+=1.综上,所求椭圆的标准方程为+=1或+=1.本题在求解时容易忽略焦点的位置,而默认了椭圆的焦点在x轴上,从而求出椭圆的标准方程为+=1.为了避免讨论,也可以如下方法设椭圆方程:与椭圆有相同焦点的椭圆方程可设为且,与椭圆有相同离心率的椭圆方程可设为,焦点在x轴上或,焦点在y轴上.易错点3忽略椭圆的范围设椭圆的中心是坐标原点,长轴在x轴上,离心率,已知点到椭圆的最远距离为,求椭圆的标准方程.【错解】由题意可...