课时提升作业(五十六)几何概型一、选择题(每小题5分,共25分)1.一数学兴趣小组利用几何概型的相关知识做试验计算圆周率,他们向一个边长为1米的正方形区域均匀撒豆,测得正方形区域有豆5120颗,正方形的内切圆区域有豆4009颗,则他们所测得的圆周率约为(保留三位有效数字)()A.3.13B.3.14C.3.15D.3.16【解析】选A.根据几何概型的定义有=,得π≈3.13.2.一个路口的红绿灯,红灯的时间为30秒,黄灯的时间为5秒,绿灯的时间为40秒,当某人到达路口时看见的是红灯的概率是()A.B.C.D.【解题提示】以时间的长短作为度量,用几何概型求解.【解析】选B.以时间的长短进行度量,故P==.【方法技巧】求与长度(角度)有关的几何概型的概率的方法求与长度(角度)有关的几何概型的概率的方法是把题中所表示的几何模型转化为长度(角度),然后求解.确定点的边界位置是解题的关键.3.分别以正方形ABCD的四条边为直径画半圆,重叠部分如图中阴影区域所示,若向该正方形内随机投一点,则该点落在阴影区域的概率为()1A.B.C.D.【解析】选B.设正方形边长为2,阴影区域的面积的一半等于半径为1的圆减去2个△BOC的面积,即为π-2,则阴影区域的面积为2π-4,所以所求概率为P==.4.任意画一个正方形,再将这个正方形各边的中点相连得到第二个正方形,依此类推,这样一共画了4个正方形,如图所示,若向图形中随机投一点,则所投点落在第四个正方形中的概率是()【解析】选C.依题意可知,第四个正方形的边长是第一个正方形边长的倍,所以第四个正方形的面积是第一个正方形面积的倍,由几何概型可知,所投点落在第四个正方形中的概率为.5.随着科技的进步,微爆技术正逐步被应用到我们日常生活中的各个方面.某医院为探究微爆技术在治疗肾结石方面的应用,设计了一个试验:在一个棱长为1cm的正方体的中心放置微量手术专用炸药,而爆炸的威力范围是一个半径为R的球,则爆炸之后形成的碎片全部落在正方体内部的概率为()2【解析】选A.由题意可知,要使碎片全部落在正方体的内部,则该爆炸的威力范围的半径r不大于正方体的内切球的半径R=.所以该事件的概率P=二、填空题(每小题5分,共15分)6.(2015·安顺模拟)如图,在边长为1的正方形OABC中任取一点P,分别以O,B为圆心,半径为画圆弧,点P在两圆之外的概率为.【解析】依题设知所求概率答案:1-7.(2015·贵阳模拟)图(2)中实线围成的部分是长方体(图(1))的平面展开图,其中四边形ABCD是边长为1的正方形.若向虚线围成的矩形内任意抛掷一质点,它落在长方体的平面展开图内的概率是,则此长方体的体积是.【解题提示】设长方体的高为h,用h表示出图(2)中虚线围成的矩形的面积及平面展开图的面积,再由几何概型的概率公式构造含有h的方程,求出h后再求解体积.3【解析】设长方体的高为h,则图(2)中虚线围成的矩形长为2+2h,宽为1+2h,面积为(2+2h)(1+2h),展开图的面积为2+4h;由几何概型的概率公式知,得h=3,所以长方体的体积是V=1×3=3.答案:38.已知m∈[1,7],则函数f(x)=-(4m-1)x2+(15m2-2m-7)x+2在实数集R上是增函数的概率为.【解析】f′(x)=x2-2(4m-1)x+15m2-2m-7,依题意,知f′(x)在R上恒大于或等于0,所以Δ=4(m2-6m+8)≤0,得2≤m≤4.又m∈[1,7],所以所求的概率为.答案:4三、解答题(每小题10分,共20分)9.如图,在边长为25cm的正方形中挖去边长为23cm的两个等腰直角三角形,现有均匀的粒子散落在正方形中,问粒子落在中间带形区域的概率是多少?【解析】因为均匀的粒子落在正方形内任何一点是等可能的,所以符合几何概型的条件.设A=“粒子落在中间带形区域”,则依题意得正方形面积为:25×25=625(cm2).两个等腰直角三角形的面积为:2××23×23=529(cm2),带形区域的面积为:625-529=96(cm2).所以P(A)=.10.如图所示,圆O的方程为:x2+y2=4.(1)已知点A的坐标为(2,0),B为圆周上任意一点,求的长度小于π的概率.(2)若P(x,y)为圆O内任意一点,求点P到原点距离大于的概率.【解析】(1)圆O的周长为4π,所以弧的长度小于π的概率为=.(2)记事件A为P到原点的距离大于,则Ω(A)={(x,y)|x2+y2>2},Ω={(x,y)|x2+y2≤4},所以P(A)==.【加固训练】已知向量a=(-2,1),b=(x,y).(1)若x,y分别表示将一枚质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)先后抛掷两次时第一...