电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

【多彩课堂】2015-2016学年高中数学人教A版选修1-1课件:222《双曲线的简单几何性质》课时2VIP免费

【多彩课堂】2015-2016学年高中数学人教A版选修1-1课件:222《双曲线的简单几何性质》课时2_第1页
1/28
【多彩课堂】2015-2016学年高中数学人教A版选修1-1课件:222《双曲线的简单几何性质》课时2_第2页
2/28
【多彩课堂】2015-2016学年高中数学人教A版选修1-1课件:222《双曲线的简单几何性质》课时2_第3页
3/28
2.3双曲线2.3.2双曲线的简单几何性质(2)本节课主要学习双曲线的定义、直线与双曲线的位置关系、直线与双曲线的弦长.通过回顾双曲线的概念、方程和性质,复习直线与椭圆的位置关系等知识,巩固所学知识,充分调动学生学习的积极性和主动性.双曲线的第二定义作为了解内容,在实际教学中可以根据实际情况酌情处理,在普通班的教学中可以忽略不讲,直接讲例题1;例2研究了直线与双曲线的位置关系;例3讲的是高考的一个热点内容——弦长公式问题。直线与双曲线的弦长公式问题(可以推广到直线与其它圆锥曲线的弦长公式问题).关于x轴、y轴、原点对称yxOA2B2A1B1..F1F2yB2A1A2B1xO..F2F1)0(1babyax2222bybaxaA1(-a,0),A2(a,0)B1(0,-b),B2(0,b))10(eaceF1(-c,0)F2(c,0)F1(-c,0)F2(c,0)),b(abyax0012222Ryaxax,或关于x轴、y轴、原点对称A1(-a,0),A2(a,0))1(eace无xaby图形方程范围对称性顶点离心率渐进线关于x轴、y轴、原点对称图形方程范围对称性顶点离心率)0(1babyax2222A1(-a,0),A2(a,0)A1(0,-a),A2(0,a)),b(abxay0012222Rxayay,或关于x轴、y轴、原点对称)1(eace渐进线xbay..yB2A1A2B1xOF2F1xB1yO.F2F1B2A1A2.F1(-c,0)F2(c,0)F2(0,c)F1(0,-c)Ryaxax,或)1(eacexaby1、“共渐近线”的双曲线222222221(0)xyxyabab与共渐近线的双曲线系方程为,为参数,λ>0表示焦点在x轴上的双曲线;λ<0表示焦点在y轴上的双曲线。2、“共焦点”的双曲线(1)与椭圆有共同焦点的双曲线方程表示为22221(0)xyabab2222221().xybaab(2)与双曲线有共同焦点的双曲线方程表示为22221(0,0)xyabab2222221()xybaabxyOlF引例点M(x,y)与定点F(c,0)的距离和它到定直线的距离比是常数(c>a>0),求点M的轨迹.2axcacM解:设点M(x,y)到l的距离为d,则||MFcda即222()xcycaaxc化简得(c2-a2)x2-a2y2=a2(c2-a2)设c2-a2=b2,22221xyab(a>0,b>0)故点M的轨迹为实轴、虚轴长分别为2a、2b的双曲线.222()||axcyacx22224222(2)2axcxcyaacxcxb2x2-a2y2=a2b2即就可化为:M点M的轨迹也包括双曲线的左支.双曲线的第二定义双曲线的第二定义双曲线的第二定义平面内,若定点F不在定直线l上,则到定点F的距离与到定直线l的距离比为常数e(e>1)的点的轨迹是双曲线。定点F是双曲线的焦点,定直线叫做双曲线的准线,常数e是双曲线的离心率.对于双曲线22221xyab是相应于右焦点F(c,0)的右准线.类似于椭圆2axc是相应于左焦点F′(-c,0)的左准线.2axcxyoFlMF′2axcl′2axc点M到左焦点与左准线的距离之比也满足第二定义.想一想:中心在原点,焦点在y轴上的双曲线的准线方程是怎样的?xyoF相应于上焦点F(c,0)的是上准线2yac2yac相应于下焦点F′(-c,0)的是下准线2yac2yacF′解:dM设是点到直线的距离,根据题意,所求轨迹就是集合l54|MF|PM,d22551645(x)y.|x|由此得22916144xy.86M.所以点的轨迹是实轴、虚轴长分别为,的双曲线例1.点M(x,y)与定点F(5,0)的距离和它到定直线的距离的比是常数,求点M的轨迹.516:xl45221169xy.即xyl..FOMd.H典例展示将上式两边平方,并化简,得:双曲线中应注意的几个问题:(1)双曲线是两支曲线,而椭圆是一条封闭的曲线;(2)双曲线的两条渐近线是区别于其他圆锥曲线所特有的;(3)双曲线只有两个顶点,离心率e>1;(5)注意双曲线中a,b,c,e的等量关系与椭圆中a,b,c,e的不同.(4)等轴双曲线是一种比较特殊的双曲线,其离心率为2,实轴长与虚轴长相等,两条渐近线互相垂直;椭圆与直线的位置关系及判断方法判断方法∆<0∆=0∆>0(1)联立方程组(2)消去一个未知数(3)复习:相离相切相交直线与双曲线的位置关系XYO1)位置关系种类种类:相离;相切;相交(0个交点,一个交点,一个交点或两个交点)2)位置关系与交点个数XYOXYO相离:0个交点相交:一个交点相交:两个交点相切:一个交点3)判断直...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

【多彩课堂】2015-2016学年高中数学人教A版选修1-1课件:222《双曲线的简单几何性质》课时2

您可能关注的文档

精品文库+ 关注
实名认证
内容提供者

中小学课件教案大全

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部