电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

用函数观点看一元二次方程VIP免费

用函数观点看一元二次方程_第1页
1/20
用函数观点看一元二次方程_第2页
2/20
用函数观点看一元二次方程_第3页
3/20
用函数观点看一元二次方程我们知道:代数式b2-4ac对于方程的根起着关键的作用.复习.2422,1aacbbx有两个不相等的实数根方程时当00,0422acbxaxacb:00,0422有两个相等的实数根方程时当acbxaxacb.22,1abx没有实数根方程时当00,0422acbxaxacb.4."".004222acbacbxaxacb即来表示用根的判别式的叫做方程我们把代数式一元二次方程根的情况与b²-4ac的关系问题1:如图,以40m/s的速度将小球沿与地面成30度角的方向击出时,球的飞行路线是一条抛物线,如果不考虑空气阻力,球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有关系:h=20t–5t2考虑下列问题:(1)球的飞行高度能否达到15m?若能,需要多少时间?(2)球的飞行高度能否达到20m?若能,需要多少时间?(3)球的飞行高度能否达到20.5m?若能,需要多少时间?(4)球从飞出到落地要用多少时间?解:(1)解方程15=20t-5t²t²-4t+3=0t=1,t=3.当球飞行1s和2s时,它的高度为15m。?12ht(2)解方程20=20t-5t²t²-4t+4=0t=t=2.当球飞行2s时,它的高度为20m。122(4)解方程0=20t-5t²t²-4t=0t=0,t=4.当球飞行0s和4s时,它的高度为0m,即0s飞出,4s时落回地面。(3)解方程20.5=20t-5t²t²-4t+4.1=0 (-4)²-4*4.1<0,∴方程无实数根1(2、20)从以上可以看出,已知二次函数y的值为m,求相应自变量x的值,就是求相应一元二次方程的解.例如,已知二次函数y=-X2+4x的值为3,求自变量x的值.就是求方程3=-X2+4x的解,例如,解方程X2-4x+3=0就是已知二次函数y=X2-4x+3的值为0,求自变量x的值.结论:一元二次方程ax2+bx+c=0的两个根为x1,x2,则抛物线y=ax2+bx+c与x轴的交点坐标是(x1,0),(x2,0)观察:下列二次函数的图象与x轴有公共点吗?如果有,公共点横坐标是多少?当x取公共点的横坐标时,函数的值是多少?由此,你得出相应的一元二次方程的解吗?(1)y=x2+x-2(2)y=x2-6x+9(3)y=x2-x+1二次函数y=ax2+bx+c的图象和x轴交点的横坐标与一元二次方程ax2+bx+c=0的根有什么关系?y=x²-6x+9Y=x²+x-2Y=x²-x+1xy?(1)设y=0得x2+x-2=0x1=1,x2=-2∴抛物线y=x2+x-2与x轴有两个公共点,公共点的横坐标分别是1和-2,当x取公共的的横坐标的值时,函数的值为0.(2)设y=0得x2-6x+9=0x1=x2=3∴抛物线y=x2-6x+9与x轴有一个公共点,公共点的横坐标是3当x取公共点的横坐标的值时,函数的值为0.(3)设y=0得x2-x+1=0 b2-4ac=(-1)2-4*1*1=-3<0∴方程x2-x+1=0没有实数根∴抛物线y=x2-x+1与x轴没有公共点Y=x²+x-2Y=x²-x+1y=x²-6x+9xy(-2、0)(1、0)二次函数y=ax2+bx+c的图象和x轴交点一元二次方程ax2+bx+c=0的根一元二次方程ax2+bx+c=0根的判别式Δ=b2-4ac有两个交点有两个不相等的实数根b2-4ac>0只有一个交点有两个相等的实数根b2-4ac=0没有交点没有实数根b2-4ac<0二次函数y=ax2+bx+c的图象和x轴交点的横坐标与一元二次方程ax2+bx+c=0的根有什么关系?二次函数y=ax2+bx+c的图象和x轴交点有三种情况:(1)有两个交点(2)有一个交点(3)没有交点二次函数与一元二次方程b2–4ac>0b2–4ac=0b2–4ac<0若抛物线y=ax2+bx+c与x轴有交点,则b2–4ac≥0△>0△=0△<0OXY二次函数y=ax2+bx+c的图象和x轴交点判别式:b2-4ac二次函数y=ax2+bx+c(a≠0)图象一元二次方程ax2+bx+c=0(a≠0)的根xyO与x轴有两个不同的交点(x1,0)(x2,0)有两个不同的解x=x1,x=x2b2-4ac>0xyO与x轴有唯一个交点)0,2(ab有两个相等的解x1=x2=ab2b2-4ac=0xyO与x轴没有交点没有实数根b2-4ac<0方法:(1)先作出图象;(2)写出交点的坐标;(-1.3、0)、(2.3、0)(3)得出方程的解.x=-1.3,x=2.3。利用二次函数的图象求方程x2-x-3=0的实数根(精确到0.1).?xy121用你学过的一元二次方程的解法来解,准确答案是什么?基础练习:1.不与x轴相交的抛物线是()Ay=2x2–3By=-2x2+3Cy=-x2–3xDy=-2(x+1)2-32.若抛物线y=ax2+bx+c,当a>0,c<0时,图象与x轴交点情况是()A无交点B只有一个交点C有两个交点D不能确定DC3、已知二次函数y=ax+bx+c的图象如图所示,则一元二次方程ax+bx+c=0的解是.XY05224、若抛物线y=ax2+bx+c,当a>0,c<0时,图...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

用函数观点看一元二次方程

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部