电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

平行四边形的性质教学设计(陈敏)VIP免费

平行四边形的性质教学设计(陈敏)_第1页
1/4
平行四边形的性质教学设计(陈敏)_第2页
2/4
平行四边形的性质教学设计(陈敏)_第3页
3/4
《平行四边形的性质》教学设计单位:鹤壁市第七中学年级:八年级设计者:陈敏时间:2014年12月课题平行四边形的性质课型新授案序第2课时教学目标知识技能掌握平行四边形对角线互相平分的性质,理解平行四边形中心对称的特征。数学思考根据平行四边形的性质进行简单的计算和证明,通过观察、实验、归纳、证明,培养学生的推理论证能力和逻辑思维能力。解决问题从数学的角度去探究平行四边形的性质,并能运用平行四边形的性质进行有关的证明和计算,发展应用意识。情感态度在应用过程中培养独立思考的习惯,在数学学习活动中获得成功的体验。教学重点平行四边形对角线互相平分的性质,以及性质的应用。教学难点综合运用平行四边形的性质进行有关的论证和计算。课前准备(教具、活动准备等)多媒体教学过程教学步骤师生活动设计意图活动一:课堂引入1.复习提问:(1)什么样的四边形是平行四边形?四边形与平行四边形的关系是:(2)平行四边形的性质:①具有一般四边形的性质(内角和是)。②角:平行四边形的对角相等,邻角互补。边:平行四边形的对边相等。教师检验学生的学习知识的情况。2.【探究】:请学生在纸上画两个全等的平行四边形,分别记作ABCD和EFGH,并连接对角线AC、BD和EG、HF,设它们分别交于点O.把这两个平行四边形落在一起,在点O处钉一个图钉,将ABCD绕点O旋转,观察它还和EFGH重合吗?你能从中看出前面所得到的平行四边形的边、角关系吗?进一步,你还能发现平行四边形的什么性质通过复习提问,可以为本节课的顺利进行做好铺垫。让学生动手探究,将动手实践得出的经验归纳成数学结论,使学生亲身参与数学研究的过程,并在此过程中体DAEOFCB3124吗?结论:(1)平行四边形是中心对称图形,两条对角线的交点是对称中心;(2)平行四边形的对角线互相平分。会数学研究的乐趣。活动二:例题分析例1(补充)已知:如图,ABCD的对角线AC、BD相交于点O,EF过点O与AB、CD分别相交于点E、F.求证:OE=OF,AE=CF,BE=DF.证明:在ABCD中,AB∥CD,∴∠1=∠2.∠3=∠4.又OA=OC(平行四边形的对角线互相平分),∴△AOE≌△COF(ASA).∴OE=OF,AE=CF(全等三角形对应边相等). ABCD,∴AB=CD(平行四边形对边相等).∴AB-AE=CD-CF.即BE=FD.※【引申】若例1中的条件都不变,将EF转动到图b的位置,那么例1的结论是否成立?若将EF向两方延长与平行四边形的两对边的延长线分别相交(图c和图d),例1的结论是否成立,说明你的理由.解略。本节课通过旋转平行四边形,得到平行四边形是中心对称图形和对角线互相平分这一性质,综合性强,教学中要注意引导。教师给出规范的证明过程的板书,可以起到示范的作用,也在向学生强调要重视数学的基本功。学生独立思考后,再通过交流和引导,实现知识向能力的转化,让学生主动尝试从数学角度运用所学知识和方法寻求解决问题的策略,训练学生能清晰地、有条理地表达自己的思考过程。例2(教材的例2)已知四边形ABCD是平行四边形,AB=10cm,AD=8cm,AC⊥BC,求BC、CD、AC、OA的长以及ABCD的面积。分析:由平行四边形的对边相等,可得BC、CD的长,在Rt△ABC中,由勾股定理可得AC的长.再由平行四边形的对角线互相平分可求得OA的长,根据平行四边形的面积计算公式:平行四边形的面积=底×高(高为此底上的高),可求得ABCD的面积。(平行四边形的面积小学学过,再次强调“底”是对应着高说的,平行四边形中,任一边都可以作为“底”,“底”确定后,高也就随之确定了。)3.平行四边形的面积计算。共同完成例2的学习,教师要多启发学生去思考问题。本题需要用的知识点较多,有平行四边形的性质1、3,有勾股定理以及平行四边形的面积计算,综合性强,分析后让学生独立完成解答,培养学生的推理能力,让每一步计算都有理有据。活动三:随堂练习1.在平行四边形中,周长等于48,①已知一边长12,求各边的长②已知AB=2BC,求各边的长③已知对角线AC、BD交于点O,△AOD与△AOB的周长的差是10,求各边的长。2.如图,ABCD中,AE⊥BD,∠EAD=60°,AE=2cm,AC+BD=14cm,则△OBC的周长是_______cm.3.ABCD一内角的平分线与边相交并把...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

平行四边形的性质教学设计(陈敏)

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部