3.2.1几个常用函数的导数一、复习求函数的导数的方法是:(1)()();yfxxfx求函数的增量(2):()();yfxxfxxx求函数的增量与自变量的增量的比值0(3)()lim.xyyfxx求极限,得导函数求切线方程的步骤:(1)求出函数在点x0处的变化率,得到曲线在点(x0,f(x0))的切线的斜率。0()fx(2)根据直线方程的点斜式写出切线方程,即000()()().yfxfxxx二、几种常见函数的导数0()CC公式一:为常数:(),yfxC解1)函数y=f(x)=c的导数.()()0,yfxxfxCC0,yx0()lim0.xyfxCx二、几种常见函数的导数'1x公式二::(),yfxx解2)函数y=f(x)=x的导数.()()(),yfxxfxxxxx1,yx0()'lim1.xyfxxx二、几种常见函数的导数2'2xx公式三:()2:(),yfxx解3)函数y=f(x)=x2的导数.222()()()2,yfxxfxxxxxxx222,yxxxxxxx220002()()'limlimlim(2)2.xxxyxxxfxxxxxxx二、几种常见函数的导数211'xx公式三:()1:(),yfxx解4)函数y=f(x)=1/x的导数.11()()()xyfxxfxxxxxxx1,()yxxxx200111()()'limlim.()xxyfxxxxxxx21)()2)(),3)(),14)(),yfxCyfxxyfxxyfxx'1y21'yx'2yx表示y=x图象上每一点处的切线斜率都为1'0y表示y=C图象上每一点处的切线斜率都为0公式:.)()(1Qnnxxnn可以直接使用的基本初等函数的导数公式11.(),'()0;2.(),'();3.()sin,'()cos;4.()cos,'()sin;5.(),'()ln(0);6.(),'();17.()log,'()(0,1);ln8.nnxxxxafxcfxfxxfxnxfxxfxxfxxfxxfxafxaaafxefxefxxfxaaxa公式若则公式若则公式若则公式若则公式若则公式若则公式若则且公式若1()ln,'();fxxfxx则导数的运算法则:法则1:两个函数的和(差)的导数,等于这两个函数的导数的和(差),即:()()()()fxgxfxgx法则2:两个函数的积的导数,等于第一个函数的导数乘第二个函数,加上第一个函数乘第二个函数的导数,即:()()()()()()fxgxfxgxfxgx法则3:两个函数的商的导数,等于第一个函数的导数乘第二个函数,减去第一个函数乘第二个函数的导数,再除以第二个函数的平方.即:2()()()()()(()0)()()fxfxgxfxgxgxgxgx由法则2:()'()()()CfxCfxCfxCfx例2:求下列函数的导数:322224(1)2312(2);(3);1(4)tan;(5)(23)1;1(6);(7);yxxyxxxyxyxyyxyxxxx答案:2(1)32;yx2221(3);(1)xyx21(4);cosyx326(5);1xxyx2314(2);yxx54(6);yx3(7);2yx题型一:导数公式及导数运算法则的应用练习1:求双曲线y=1x在点(2,12)处的切线方程.解: y′=-1x2,∴y′|x=2=-14.∴切线方程为y-12=-14(x-2),即:x+4y-4=0练习2:求抛物线y=14x2在点(4,74)处的切线方程.00,),xy解:设切点(01',2kyx又切线0001(),2yyxxx切线方程:74切线过(4,),20014yx①00071(4)42yxx,200017224yxx②0017xx解①②得:或149),44切点为(1,)或(7,11491(1)(4)4242yxyx切线方程:或24104490xyxy即:或14例3求过点(1,-1)与曲线y=x3-2x相切的直线方程.解:设P(x0,y0)为切点,则切线斜率为k=f′(x0)=3x20-2故切线方程为y-y0=(3x20-2)(x-x0)① (x0,y0)在曲线上,∴y0=x30-2x0②又 (1,-1)在切线上,解得x0=1或x0=-12.∴将②代入③式得-1-(x30-2x0)=(3x20-2)(1-x0).故所求的切线方程为:y+1=x-1或y+1=-54(x-1).即x-y-2=0或5x+4y-1=0.∴-1-y0=(3x20-2)(1-x0)③则切线斜率为k=1或k=-54化简得2x30-3x20+1=0.分解因式得(x0-1)2(2x0+1)=0.例1.已知P(-1,1),Q(2,4)是曲线y=x2上的两点,(1)求过点P的曲线y=x2的切...