电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

数形结合教学设计VIP免费

数形结合教学设计_第1页
1/5
数形结合教学设计_第2页
2/5
数形结合教学设计_第3页
3/5
《数形结合思想的应用》教学设计湖北省通城县塘湖中学汪锦飞第十期一、教学设计的背景《课程标准》明确指出:“加强数学思想方法在进行数学思考和解决问题中的作用,引导学生从解题的思想和方法上考虑问题,达到巧妙解题。”可见,数学思想和方法已经提高到不容忽视的重要地位,素质教育下的数学教学更注重数学品质的培养和数学能力的提高。其实数学问题的解决过程就是用“不变”的数学思想和方法去解决不断“变换”的数学命题,这既是渗透的目的,也是实现走出题海的重要环节。数学思想方法应从平时的“隐含、渗透”阶段进入中考复习时第二轮的“介绍、运用”阶段。在整个中学数学教学中,数形结合思想是一种比较一般而又十分重要的思想方法。数形结合思想:就是把刻划数量关系的数和具体直观的图形有机结合,是抽象思维和形象思维结合,通过“以形助数”或“以数解形”,可使复杂问题简单化,抽象问题具体化,从而达到优化解题途径的目的。数形结合的思想贯穿初中数学教学的始终。数形结合思想的主要内容体现在以下几个方面:①以数解形:建立适当的代数模解决有关几何的问题型。②以形助数:建立几何模型(或函数图象)解决有关方程和函数的问题。③数形结合:与函数有关的代数、几何综合性问题。④以图象形式呈现信息的应用性问题。(5)所给的等式或代数式的结构含有明显的几何意义。通过考察学生数形结合的思想,可以检测出他们掌握数学基础知识的程度、理解知识的深度及对数学知识的综合运用能力。在初中阶段训练学生利用“数形结合”的方法观察、分析问题,有助于学生学习抽象的知识,对锻炼相应的数学思维也有极大的帮助。二、教学目标:1、知识目标1)理解数形结合的本质:几何图形的性质反映了数量关系,数量关系决定了几何图像的性质.2)了解数形结合在解决数学问题中的作用,化抽象为直观,化直观为精确,从而使问题得到简捷解决.2、能力目标1)学会以数解形、以形助数、数形结合思想进行数学思考和解决问题,培养用数形结合的思想解决问题的意识.掌握将代数问题转化为几何问题、几何问题转化为代数问题的技巧.2)通过运用数形结合的思想解题,培养学生的观察能力、分析归纳能力,领会数形结合转化问题的思想方法.3、情感目标通过本节课的学习,提高学生分析问题和解决问题的能力.培养学生主动探索、勇于发现的科学精神,培养学生的创新意识和创新精神.渗透理论联系实际、从特殊到一般、把未知转化为已知的辨证唯物主义思想.三、教学重、难点重点:以数解形、以形助数、数形结合。难点:在代数与几何的结合点上去找出解题思路:如何以数思形、以形思数,从而达到数形结合、解决问题的目的。四、教学方法纵观整个初中阶段的数学教学,数学思想方总是隐含其中、是在逐步渗透着的,进入中考复习第二轮时必须进行系统的介绍、运用,结合九年级学生的知识和技能的掌握情况及其心理特征,本节课拟采用引导发现探索法,教师适当引导,学生自主探索、合作交流。教具:利用多媒体辅助教学,使学生更容易从直观上理解“数”和“形”之间的关系。五、教学过程(一)创设情景,以旧引新问题1:如图是一个边长为1、经五次对开的正方形,你想到了一个怎样的求值式(或等式)?学生回答后教师指出:这就是以数解形。.学会形中觅数,善于观察图形,找出图形中蕴含的代数关系。如果在一个几何问题中,条件和结论都容易用代数中的式子表示出来,那么,我们就可以把解决这个问题的过程转化为代数中的演算来完成。数学的发展使许多几何问题不再是单纯的图形研究,人们在透过形的外表,探索由图形到数量的联系与规律,把图形信息转化为代数信息,使要解决的几何问题化为数量关系来实现数形转化。问题2:由代数式你想到了一个怎样的几何图形?学生回答后教师指出:这就是以形助数。善于以数思形,正确构造图形,通过几何模型反映相应代数信息,一般来说,代数问题不依赖于几何都是可以解决的,然而由于代数关系比较抽象,因此,若能结合问题中代数关系赋予几何意义,那么往往就能借助直观形象对问题做出透彻分析,从而探求出解决问题的途径。问题3:在我们所学的数学知识中,还有哪些可...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

数形结合教学设计

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部