问题:如图以40m/s的速度将小球沿与地面成30°角的方向击出时,球的飞行路线将是一条抛物线,如果不考虑空气阻力,球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有关系h=20t-5t2考虑以下问题:(1)球的飞行高度能否达到15m?如能,需要多少飞行时间?(2)球的飞行高度能否达到20m?如能,需要多少飞行时间?(3)球的飞行高度能否达到20.5m?为什么?(4)球从飞出到落地需要用多少时间?所以可以将问题中h的值代入函数解析式,得到关于t的一元二次方程,如果方程有合乎实际的解,则说明球的飞行高度可以达到问题中h的值;否则,说明球的飞行高度不能达到问题中h的值.解:(1)解方程15=20t-5t2t2-4t+3=0t1=1,t2=3当球飞行1s和3s时,它的高度为15m.分析:由于球的飞行高度h与飞行时间t的关系是二次函数h=20t-5t2t1=1st2=3s15m15m(2)解方程20=20t-5t2t2-4t+4=0t1=t2=2当球飞行2s时,它的高度为20m.t1=2s20m(3)解方程20.5=20t-5t2t2-4t+4.1=0因为(-4)2-4×4.1<0,所以方程无解.球的飞行高度达不到20.5m.20m(4)解方程0=20t-5t2t2-4t=0t1=0,t2=4当球飞行0s和4s时,它的高度为0m,即0s时球从地面发出,4s时球落回地面.0s4s已知二次函数值,求对应自变量的值解一元二次方程的根二次函数与一元二次方程的关系(1)从上面可以看出,二次函数与一元二次方程关系密切.一般地,我们可以利用二次函数y=ax2+bx+c深入讨论一元二次方程ax2+bx+c=0例如,已知二次函数y=-x2+4x的值为3,求自变量x的值,可以解一元二次方程-x2+4x=3(即x2-4x+3=0).反过来,解方程x2-4x+3=0又可以看作已知二次函数y=x2-4x+3的值为0,求自变量x的值.下列二次函数的图象与x轴有公共点吗?如果有,公共点的横坐标是多少?当x取公共点的横坐标时,函数的值是多少?由此,你能得出相应的一元二次方程的根吗?(1)y=x2+x-2(2)y=x2-6x+9(3)y=x2-x+1(1)抛物线y=x2+x-2与x轴有两个公共点,它们的横坐标是-2,1.当x取公共点的横坐标时,函数的值是0.由此得出方程x2+x-2=0的根是-2,1.(2)抛物线y=x2-6x+9与x轴有一个公共点,这点的横坐标是3.当x=3时,函数的值是0.由此得出方程x2-6x+9=0有两个相等的实数根3.(3)抛物线y=x2-x+1与x轴没有公共点,由此可知,方程x2-x+1=0没有实数根.1y=x2-6x+9y=x2-x+1y=x2+x-2有两个根有一个根(两个相同的根)没有根有两个交点有一个交点没有交点b2–4ac>0b2–4ac=0b2–4ac<0二次函数y=ax2+bx+c的图象和x轴交点的三种情况与一元二次方程根的关系ax2+bx+c=0的根y=ax2+bx+c的图象与x轴若抛物线y=ax2+bx+c与x轴有交点,则________________。b2–4ac≥0课堂小结二次函数y=ax2+bx+c的图象和x轴交点的三种情况与一元二次方程根的关系:二次函数y=ax2+bx+c的图象和x轴交点一元二次方程ax2+bx+c=0的根一元二次方程ax2+bx+c=0根的判别式Δ=b2-4ac有两个交点有两个不相等的实数根只有一个交点有两个相等的实数根没有交点没有实数根b2–4ac>0b2–4ac=0b2–4ac<01.如果关于x的一元二次方程x2-2x+m=0有两个相等的实数根,则m=___,此时抛物线y=x2-2x+m与x轴有__个交点.2.已知抛物线y=x2–8x+c的顶点在x轴上,则c=__.11163.若抛物线y=x2+bx+c的顶点在第一象限,则方程x2+bx+c=0的根的情况是_____.b2-4ac<0随堂练习4.一元二次方程3x2+x-10=0的两个根是x1=-2,x2=5/3,那么二次函数y=3x2+x-10与x轴的交点坐标是________.(-2,0)(5/3,0)