电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

相似三角形教学设计VIP免费

相似三角形教学设计_第1页
1/3
相似三角形教学设计_第2页
2/3
相似三角形教学设计_第3页
3/3
《相似三角形》教学设计散花中学涂艳【教学目标】1.了解相似三角形的概念,会表示两个三角形相似.2.能运用相似三角形的概念判断两个三角形相似.3.理解“相似三角形的对应角相等,对应边成比例”的性质.【重点难点】:重点:相似三角形的概念和性质.难点:在具体的图形中找出相似三角形的对应边,并写出比例式.【教学准备】多媒体课件,作业纸.【教学过程】一、创设情境,导入新课1.课件出示:①不同尺寸的两面国旗上,②不同比例尺的两幅地图.2.问:以上图形之间可以通过哪一种变换得到?三角形可以进行相似变换吗将一个三角形作相似变换后所得的像与原图形的边和角之间有什么关系?3.提示课题:相似三角形.二、合作学习,探索新知1.动手操作(学生在作业纸上完成,教师进行展示)在方格纸内先任意画一个△ABC,然后画出△ABC经某一相似变换(如放大或缩小若干倍)后得到像△A′B′C′(点A′、B′、C′分别对应点A、B、C).2.小组合作完成“议一议”:问题1:△A′B′C′与△ABC对应角之间有什么关系?问题2:△A′B′C′与△ABC对应边之间有什么关系?学生相互比较得到结论:对应角相等,对应边成比例.3.学生尝试给出相似三角形的概念,教师进行总结.(1)概念:对应角相等,对应边成比例的两个三角形,叫做相似三角形.1(2)表示:相似用符号“∽”来表示,读作“相似于”,如△A′B′C′与△ABC相似,记做“△A′B′C′∽△ABC”.注意:在表示三角形相似时,一般把对应顶点的字母写在对应的位置上.(3)几何语言表述:∵∠A′=∠A,∠B′=∠B,∠C′=∠C,==,∴△A′B′C′∽△ABC.4.两人小组讨论完成“辩一辩”:下列说法是否正确,正确的打“√”,错误的打“×”,并说明理由.(1)两个全等三角形一定相似;(2)两个直角三角形一定相似;(3)两个等腰三角形一定相似;(4)两个等边三角形一定相似;(5)两个等腰直角三角形一定相似.5.学生独立尝试完成P.104-例1.6.学生小组合作探究相似三角形的性质.(1)性质:相似三角形的对应角相等,对应边成比例(2)相似三角形对应边的比,叫做两个相似三角形的相似比(或相似系数)注意:求两个相似三角形的相似比,应注意这两个三角形的前后顺序.△A′B′C′与△ABC的相似比为,△ABC与△A′B′C′的相似比为27.讨论完成P.104-“做一做”.三、学以致用,体验成功1.讲解例2:如图,D、E分别是△ABC的AB,AC边上的点,△ABC∽△ADE.已知AD∶DB=1∶2,BC=9cm,求DE的长.分析:由于△ABC∽△ADE,并且DE与BC是一对对应边,因此要求DE的长,只要知道BC的长(已知)与这两个三角形的相似比即可.(由学生口答过程,教师板书示范,并启发学生如何去分析问题,解决问题.)2.完成P.105-“课内练习”1、2.3.补充选做题:(1)如图,有一块呈三角形形状的草坪,其最大边长是20cm.在这个草坪的示意图上,最大边长为5cm,其余他两边的长度都分别3cm和4cm.求该草坪其他两2边的实际长度.(2)已知△ABC与△DEF相似,△ABC的三边为2,3,4,△DEF的一边为8,求其余两边.四、归纳小结,反思提高试谈谈通过本节课的学习,你有哪些收获与感想.五、布置作业:P.105-“课内练习”第3题,“作业题”.【教学反思】3

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

相似三角形教学设计

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部