电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

福建省长泰一中高考数学一轮复习《函数概念与基本初等函数》教案VIP免费

福建省长泰一中高考数学一轮复习《函数概念与基本初等函数》教案_第1页
1/4
福建省长泰一中高考数学一轮复习《函数概念与基本初等函数》教案_第2页
2/4
福建省长泰一中高考数学一轮复习《函数概念与基本初等函数》教案_第3页
3/4
福建省长泰一中高考数学一轮复习《函数概念与基本初等函数》教案(一)函数(三)对数函数1.理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用。2.理解对数函数的概念;会求与对数函数性质有关的问题3.知道对数函数是一类重要的函数模型4.了解指数函数与对数函数互为反函数()。(四)幂函数1.了解幂函数的概念。2.结合函数的图像,了解它们的变化情况。(五)函数与方程1.了解函数零点的概念,结合二次函数的图像,了解函数的零点与方程根的联系。2.理解并掌握连续函数在某个区间上存在零点的判定方法。能利用函数的图象和性质判别函数零点的个数(六)函数模型及其应用1.了解指数函数、对数函数以及幂函数的增长特征。知道直线上升、指数增长、对数增长等不同函数类型增长的含义。2.了解函数模型(如指数函数、对数函数、幂函数、分段函数等在社会生活中普遍使用的函数模型)的广泛应用。3.能利用给定的函数模型解决简单的实际问题。用心爱心专心1考纲导读第1课时函数及其表示一、映射1.映射:设A、B是两个集合,如果按照某种对应关系f,对于集合A中的元素,在集合B中都有元素和它对应,这样的对应叫做到的映射,记作用心爱心专心2基础过关知识网络高考导航.2.象与原象:如果f:A→B是一个A到B的映射,那么和A中的元素a对应的叫做象,叫做原象。二、函数1.定义:设A、B是,f:A→B是从A到B的一个映射,则映射f:A→B叫做A到B的,记作.2.函数的三要素为、、,两个函数当且仅当分别相同时,二者才能称为同一函数。3.函数的表示法有、、。例1.下列各组函数中,表示同一函数的是().A.B.C.D.解:C变式训练1:下列函数中,与函数y=x相同的函数是()A.y=B.y=()2C.y=lg10xD.y=解:C例2.给出下列两个条件:(1)f(+1)=x+2;(2)f(x)为二次函数且f(0)=3,f(x+2)-f(x)=4x+2.试分别求出f(x)的解析式.解:(1)令t=+1,∴t≥1,x=(t-1)2.则f(t)=(t-1)2+2(t-1)=t2-1,即f(x)=x2-1,x∈[1,+∞).(2)设f(x)=ax2+bx+c(a≠0),∴f(x+2)=a(x+2)2+b(x+2)+c,则f(x+2)-f(x)=4ax+4a+2b=4x+2.∴,∴,又f(0)=3c=3,∴f(x)=x2-x+3.变式训练2:(1)已知f()=lgx,求f(x);(2)已知f(x)是一次函数,且满足3f(x+1)-2f(x-1)=2x+17,求f(x);(3)已知f(x)满足2f(x)+f()=3x,求f(x).解:(1)令+1=t,则x=,∴f(t)=lg,∴f(x)=lg,x∈(1,+∞).(2)设f(x)=ax+b,则3f(x+1)-2f(x-1)=3ax+3a+3b-2ax+2a-2b=ax+b+5a=2x+17,∴a=2,b=7,故f(x)=2x+7.(3)2f(x)+f()=3x,①把①中的x换成,得2f()+f(x)=②用心爱心专心3典型例题①×2-②得3f(x)=6x-,∴f(x)=2x-.例3.等腰梯形ABCD的两底分别为AD=2a,BC=a,∠BAD=45°,作直线MN⊥AD交AD于M,交折线ABCD于N,记AM=x,试将梯形ABCD位于直线MN左侧的面积y表示为x的函数,并写出函数的定义域.解:作BH⊥AD,H为垂足,CG⊥AD,G为垂足,依题意,则有AH=,AG=a.(1)当M位于点H的左侧时,N∈AB,由于AM=x,∠BAD=45°.∴MN=x.∴y=S△AMN=x2(0≤x≤).(2)当M位于HG之间时,由于AM=x,∴MN=,BN=x-.∴y=SAMNB=[x+(x-)]=ax-(3)当M位于点G的右侧时,由于AM=x,MN=MD=2a-x.∴y=SABCD-S△MDN=综上:y=变式训练3:已知函数f(x)=(1)画出函数的图象;(2)求f(1),f(-1),f的值.解:(1)分别作出f(x)在x>0,x=0,x<0段上的图象,如图所示,作法略.(2)f(1)=12=1,f(-1)=-f=f(1)=1.1.了解映射的概念,应紧扣定义,抓住任意性和唯一性.2.函数的解析式常用求法有:待定系数法、换元法(或凑配法)、解方程组法.使用换元法时,要注意研究定义域的变化.3.在简单实际问题中建立函数式,首先要选定变量,然后寻找等量关系,求得函数的解析式,还要注意定义域.若函数在定义域的不同子集上的对应法则不同,可用分段函数来表示.用心爱心专心4小结归纳

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

福建省长泰一中高考数学一轮复习《函数概念与基本初等函数》教案

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部