14.2(1)空间直线与直线的位置关系一、教学内容分析掌握并熟练运用空间几何的公理4.通过对于平面几何中这一理论的复习与大胆推测,在立体几何中能通过寻找到作为中间桥梁的直线,达到证明和作图的目的.教育学生不仅注意对研究结果的掌握和应用,更重视科学方面大胆的猜测和思维的严密论证.对研究方法的思想渗透及分析问题和解决问题能力的培养;以自主探究为主,通过体验数学发现和创造的历程,培养学生观察、分析、逻辑推理、理性思维的能力.二、教学目标设计掌握公理4,在常见几何体内(如长方体、正方体等),能快速应用公理,找到问题突破口,寻找作为中间桥梁的直线.学会利用公理4画出几何体的截面.在公理4和定理的推导过程中,着重对初中知识的复习和掌握,引导同学大胆推测,尝试科学的探索精神.在空间四边形的中点、中位线图形中进行推广和证明.三、教学重点及难点重点:公理重点:公理44、等角定理及其应用、等角定理及其应用..难点:寻找平行四边形解决有关平行的证明题,等角定理的应用.四、教学流程设计五、教学过程设计一、引入课题从生活实例中寻找空间中平行的传递性..空间四边形有关结论的推导、知识要点的应用立体几何公理4辨析理论、分析例题应用技巧引入新课:空间中两条直线的平行位置关系等角定理的推理过程以及应用和掌握观察问题、思考问题:立体几何理论与平面几何的区别与联系课堂总结、布置作业二、讲授新课(一)公理4问题1:平面中直线的平行传递性?问题2:利用教室内实例寻找空间中直线平行的传递性.公理4:平行于同一直线的两条直线相互平行.公理分析:要证明空间两条直线平行,要找到中间桥梁.(二)等角定理问题1:初中学习的等角定理?如果两条相交直线与另两条相交直线分别平行,那么这两组相交直线所成角相等或互补.问题2:在空间中,这个定理仍然成立吗?等角定理(书第9页):如果两条相交直线与另两条相交直线分别平行,那么这两组相交直线所成的锐角(或直角)相等.注意表述上区别:平面几何合立体几何中某些理论上的不一致应引起学生掌握理论时的重视.证明:书第9页(三)例题分析例1:在长方体1111ABCDABCD中,E、F分别为11BC,AD的中点,求证:1AFEC证明:取BC中点G,连结1BG11BCGBCE为中点为中点11EBGCBGEC1111=AB=ABFGABFGABABAB且且1111=ABFGABFG且1111ABFGAFBG1AFEC[例题解析]:学会在空间中借助平行四边形,寻找起到桥梁作用的直线.B例2书例1(见书第9页)[说明]公理4应用于作图题中.例3在长方体1111ABCDABCD中,求证:111DACACB.1B证明:11111111=ACAACCAACCAACCAC且,11111BCABCABCABCAD111D且DD,111,DACACB是锐角,111DACACB.ABBDCBABABBDCBEFA[说明]:掌握在空间中利用直线的平行来证明角相等.(四)、问题拓展1、空间四边形空间四边形相关知识复习:在空间四边形ABCD中,E、H分别为AB、AD中点,F、G为CB、CD三等分点,且11,33CFCBCGCD.求证:EF,HG,AC三线共点.[说明]复习公理1、2,对于空间四边形——这一立体几何内的新事物,进行回顾和整理,为下一步更好学习做好准备.例4已知E、F、G、H分别是空间四边形ABCD各边中点.(1)判断四边形EFGH形状;(答:平行四边形.通过公理4)(2)若空间四边形中对角线AC=BD,判断四边形EFGH形状;(答:菱形.平行四边形对角线相互垂直)(3)四边形EFGH什么情况下为矩形?(答:对角线相互垂直,即ACBD)(4)结合(2)、(3),可得正方形EFGH(5)第(2)、(3)、(4)题的逆命题是否成立?该如何求证?如(2)若四边形EFGH中,EGHF,则AC=BD(6)若E、H分别为AB、AD中点,F、G为CB、CD三等分点,且11,33CFCBCGCD,判断四边形EFGH形状.(梯形EFGH)证明:E、H分别为AB、AD中点1122EHBCEHBC且13CFCGBCCD1133FGBCFGBC且EHFGEHFG,梯形EFGH[说明]这是空间两条直线平行——公理4的典型应用,加以推测、证明的重要应用.2、对于平面图形的结论:有些可推广到立几图形并有完全相同的结论;有些在立几图形中有相似的结论,但不完全相同;有些在立几中则有完全不同的结论.三...