江苏省连云港市灌云县四队中学高中数学选修1-1教案:充分条件和必要条件教学目标1.使学生正确理解充分条件、必要条件和充要条件三个概念,并能在判断、论证中正确运用.2.在师生、学生间的交流中增强逻辑思维活动,为用等价转化思想解决数学问题打下良好的逻辑基础.重点难点教学重点:充分不必要条件、必要不充分条件的概念;教学难点:判断命题的充分不必要条件、必要不充分条件;教学过程一、问题情境:前面讨论了“若p则q”形式的命题的真假判断,请同学们判断下列命题的真假,并说明条件和结论有什么关系?(1)若x=y,则x2=y2(2)若ab=0,则a=0(3)若x2>1,则x>1(4)若x=1或x=2,则x2-3x+2=0二、互动探究推断符号“”的含义奎屯王新敞新疆“若p则q”为真,是指由p经过推理可以得出q,也就是说,如果p成立,那么q一定成立,记作pq,或者qp;如果由p推不出q,命题为假,记作pq.简单地说,“若p则q”为真,记作pq(或qp);“若p则q”为假,记作pq(或qp).1.什么是充分条件?什么是必要条件?一般地,如果已知pq,那么就说:p是q的充分条件;q是p的必要条件;如果已知pq,且qp,那么就说:p是q的充分且必要条件,简记充要条件;如果已知pq,那么就说:p不是q的充分条件;q不是p的必要条件;回答上述命题(1)(2)(3)(4)中的条件关系.命题(1)中因x=yx2=y2,所以“x=y”是“x2=y2”的充分条件,“x2=y2”是“x=y”的必要条件;x2=y2x=y,所以“x2=y2”不是“x=y”的充分条件,“x=y”不是“x2=y2”的必要条件;命题(2)中因a=0ab=0,,所以“a=0”是“ab=0”的充分条件.“ab=0”是“a=0”的必要条件.ab=0a=0,所以“ab=0”不是“a=0”的充分条件,“a=0”不是“ab=02”的必要条件;命题(3)中,因“x>1x2>1”,所以“x>1”是x2>1的充分条件,“x2>1”是“x>1”的必要条件.x2>1x>1,所以“x2>1”不是“x>1”的充分条件,“x>1”不是“x2>1”的必要条件.命题4)中,因x=1或x=2x2-3x+2=0,所以“x=1或x=2”是“x2-3x+2=0”的充要分条件.1由上述命题的充分条件、必要条件的判断过程,可确定命题按条件和结论的充分性、必要性可分为四类:(1)充分不必要条件,即pq,而qp.[(2)必要不充分条件,即:pq,而qp.(3)既充分又必要条件,即pq,又有qp.(4)既不充分又不必要条件,即pq,又有qp.2.充分条件与必要条件的判断(1)直接利用定义判断:即“若pq成立,则p是q的充分条件,q是p的必要条件”.(条件与结论是相对的)(2)利用等价命题关系判断:“pq”的等价命题是“qp”。即“若┐q┐p成立,则p是q的充分条件,q是p的必要条件”。三、精讲点拨例1指出下列各组命题中,p是q的什么条件,q是p的什么条件:(1)p:x-1=0;q:(x-1)(x+2)=0.(2)p:两条直线平行;q:内错角相等.(3)p:a>b;q:a2>b2(4)p:四边形的四条边相等;q:四边形是正四边形.分析:可根据“若p则q”与“若q则p”的真假进行判断.解:⑴由pq,即x-1=0(x-1)(x+2)=0,知p是q的充分条件,q是p的必要条件.⑵由pq,即两条直线平行内错角相等,知p是q的充要条件,q是p的充要条件;⑶由pq,即a>ba2>b2,知p不是q的充分条件,q不是p的必要条件;qp,即a2>b2a>b,知q不是p的充分条件,p不是q的必要条件.综述:p是q的既不充分条件又不必要条件。⑷由qp,即四边形是正四边形四边形的四条边相等,知q是p的充分条件,p是q的必要条件.由pq,即四边形的四条边相等四边形是正四边形,知p不是q的充分条件,q不是p的必要条件;综述:p是q的必要不充分条件。四、矫正反馈教材第8页练习1,2,3[五、迁移应用已知p∶x2-8x-20>0,q∶x2-2x+1-a2>0。若p是q的充分而不必要条件,求正实数a的取值范围.课外作业教材第9页3,4教学反思2