《垂径定理》说课稿各位老师:大家好!今天我说课的课题是《垂直于弦的直径》。下面我将从教材、学情、教法、学法、教学设计和教学评价六个方面来阐述我对本节课的设计.一、教材分析(一)教材的地位及作用本节教学内容是新人教版九年级(上)第二十四章第一节圆的第二课时.本节教材是在学生学习了有关轴对称和中心对称性质之后对垂直于弦的直径和这弦的关系的学习,研究的是垂直于弦的直径和这弦的关系.垂径定理的推证是以轴对称图形的性质和圆是轴对称图形的性质为依据的.本节内容是本章基础,是圆的有关计算和圆的有关证明一个重要工具.本节课的学习也为下节课奠定基础.(二)教学目标根据学生已有的认知基础及本课教材的地位作用,依据课程标准,我确定本节课的教学目标为:1.知识目标:(1)使学生理解圆的轴对称性;(2)掌握垂径定理;(3)学会运用垂径定理,解决有关的证明和计算问题.2.能力目标:培养学生动手能力、观察能力、分析能力及联想能力.3.数学思考:经历将已学知识应用到未学知识的探索过程,发展学生的数学思维.4.情感目标:通过联系、发展、对立与统一的思考方法对学生进行辩证唯物主义观点及美育教育。(三)教学重点、难点本节课的教学重点是:垂径定理及其应用;教学难点是:对垂径定理题设与结论的区分及定理的证明方法.二、学情分析学生在生活中经常遇到圆方面的图形,对本节课会比较有兴趣,并且学过轴对称图形相关知识。同时九年级的同学仍然是比较好奇、好动、好表现的。但在合作交流、探索新知等方面发展的极不均衡。在学习的主动性、积极性等方面也有较大的差异。三、教法分析本节课的设计是以教学大纲和教材为依据,遵循因材施教的原则,坚持以学生为主体,充分发挥学生的主观能动性.教学过程中,注重学生探究能力的培养.还课堂给学生,让学生去亲身体验知识的产生过程,拓展学生的创造性思维.同时,注意加强对学生的启发和引导,鼓励培养学生们大胆猜想,小心求证的科学研究的思想.四、学法分析"赠人以鱼,不如授人以渔",最有价值的知识是关于方法的知识,首先教师应创造一种环境,引导学生从已知的、熟悉的知识入手,通过自主探究、小组合作学习、“兵帮兵、兵教兵”等方式,让学生自己在某一种环境下不知不觉中运用旧知识的钥匙去打开新知识的大门,进入新知识的领域,从不同角度去分析、解决新问题。通过基础练习、当堂检测,发掘不同层次学生的不同能力,从而达到发展学生思维能力和自学能力的目的,发掘学生的创新精神.五、教学过程(一)创设情境,引入课题建构主义强调,学生不能空着脑袋走进课堂.在日常生活中,在以往的学习中,他们已经积累了丰富的经验,都有自己的看法,体会到了数学与生活的联系.因此,我首先设计了这样一个问题情境:你知道赵洲桥吗?它是1300多年前我国隋代建造的石拱桥,是我国古代人民勤劳与智慧的结晶.它的主桥是圆弧形,它的跨度(弧所对的弦的长)为37.4m,拱高(弧的中点到弦的距离)为7.2m,你能求出赵洲桥主桥拱的半径吗?这里就是生活中的问题,目的是激发学生的探究欲望.教师可引导学生将实际问题转化为数学问题,也就是"已知弦长和拱高,如何求半径"的问题.学生可能会感到困难,从而教师指出通过本节课的学习就会迎刃而解了.这种以实际问题为切入点引入新课,不仅自然,而且反映了数学来源于实际生活,解决生活中的实际问题的基本思想.(二)动手动脑,探索定理1.探究准备让学生用纸剪一个圆,沿着圆的任意一条直径对折,重复几次,通过交流,得出圆是轴对称图形这一结论,并明白对称轴是直径所在的直线.在动手过程中,积极鼓励学生,发挥他们的主观能动性,为了等下的探究打下基础.并给出个巩固练习,加深印象.2.尝试猜想和验证定理接着引入所要探究的问题:如图,AB是⊙O的一条弦,做直径CD,使CD⊥AB,垂足为E.(1)此图是轴对称图形吗?如果是,它的对称轴是什么?(2)你能发现图中有那些相等的线段和弧?为什么?先让同学们观察这样的图形,通过观察,发现这个图形也是一个轴对称图形,对称轴是直径所在的直线,让同学们从观察中得到结论。然后观察图形猜想这个图形中一些相等的线段和弧,得到一些...