电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

初高中数学衔接知识点+配套测验VIP免费

初高中数学衔接知识点+配套测验_第1页
1/15
初高中数学衔接知识点+配套测验_第2页
2/15
初高中数学衔接知识点+配套测验_第3页
3/15
第一讲数与式的运算在初中,我们已学习了实数,知道字母可以表示数用代数式也可以表示数,我们把实数和代数式简称为数与式.代数式中有整式(多项式、单项式)、分式、根式.它们具有实数的属性,可以进行运算.在多项式的乘法运算中,我们学习了乘法公式(平方差公式与完全平方公式),并且知道乘法公式可以使多项式的运算简便.由于在高中学习中还会遇到更复杂的多项式乘法运算,因此本节中将拓展乘法公式的内容,补充三个数和的完全平方公式、立方和、立方差公式.在根式的运算中,我们已学过被开方数是实数的根式运算,而在高中数学学习中,经常会接触到被开方数是字母的情形,但在初中却没有涉及,因此本节中要补充.基于同样的原因,还要补充“繁分式”等有关内容.一、乘法公式【公式1】cabcabcbacba222)(2222证明:2222)(2)(])[()(ccbabacbacba222222aabbacbcc等式成立【例1】计算:22)312(xx解:原式=22]31)2([xx913223822)2(312312)2(2)31()2()(234222222xxxxxxxxxx说明:多项式乘法的结果一般是按某个字母的降幂或升幂排列.【公式2】3322))((babababa(立方和公式)证明:3332222322))((bababbaabbaabababa说明:请同学用文字语言表述公式2.【例2】计算:))((22bababa解:原式=333322)(])()()][([bababbaaba我们得到:【公式3】3322))((babababa(立方差公式)请同学观察立方和、立方差公式的区别与联系,公式1、2、3均称为乘法公式.【例3】计算:(1))416)(4(2mmm(2))41101251)(2151(22nmnmnm(3))164)(2)(2(24aaaa(4)22222))(2(yxyxyxyx2/15解:(1)原式=333644mm(2)原式=3333811251)21()51(nmnm(3)原式=644)()44)(4(63322242aaaaa(4)原式=2222222)])([()()(yxyxyxyxyxyx63362332)(yyxxyx说明:(1)在进行代数式的乘法、除法运算时,要观察代数式的结构是否满足乘法公式的结构.(2)为了更好地使用乘法公式,记住1、2、3、4、⋯、20的平方数和1、2、3、4、⋯、10的立方数,是非常有好处的.【例4】已知0132xx,求331xx的值.解:0132xx0x31xx原式=18)33(3]3)1)[(1()11)(1(2222xxxxxxxx说明:本题若先从方程0132xx中解出x的值后,再代入代数式求值,则计算较烦琐.本题是根据条件式与求值式的联系,用整体代换的方法计算,简化了计算.请注意整体代换法.本题的解法,体现了“正难则反”的解题策略,根据题求利用题知,是明智之举.【例5】已知0cba,求111111()()()abcbccaab的值.解:bacacbcbacba,,,0原式=abbacaccabbccbaabccbaabccacbbbcaa222)()()(①abccabccabbababa3)3(]3))[((32233abccba3333②,把②代入①得原式=33abcabc说明:注意字母的整体代换技巧的应用.引申:同学可以探求并证明:))((3222333cabcabcbacbaabccba二、根式式子(0)aa叫做二次根式,其性质如下:(1)2()(0)aaa(2)2||aa3/15(3)(0,0)ababab(4)(0,0)bbabaa【例6】化简下列各式:(1)22(32)(31)(2)22(1)(2)(1)xxx解:(1)原式=|32||31|23311(2)原式=(1)(2)23(2)|1||2|(1)(2)1(1x2)xxxxxxxx说明:请注意性质2||aa的使用:当化去绝对值符号但字母的范围未知时,要对字母的取值分类讨论.【例7】计算(没有特殊说明,本节中出现的字母均为正数):(1)323(2)11ab(3)3282xxx解:(1)原式=23(23)3(23)63323(23)(23)(2)原式=22ababababab(3)原式=2222222223222xxxxxxxxxxx说明:(1)二次根式的化简结果应满足:①被开方数的因数是整数,因式是整式;②被开方数不含能开得尽方的因数或因式.(2)二次根式的化简常见类型有下列两种:①被开方数是整数或整式.化简时,先将它分解因数或因式,然后把开得尽方的因数或因式开出来;②分母中有根式(如323)或被开方数有分母(如2x).这时可将其化为ab形式(如2x可化为2x),转化为“分母中有根式”的情况.化简时,要把分母中的根式化为有理式,采取分子、分母同乘以一个根式进行化简.(如323化为3(23)(23)(23),其中23与23叫做互为有理化因式).【例8】计算:(1)2(1)(1)()ababab(2)aaaabaab解:(1)原式=22(1)()(2)2221baaabbaabb4/15(2)原式=11()()aaaabaababab()()2()()ababaababab说明:有理数的运算法则都适用于加法、乘法的运算律以及多项式的乘法公式...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

初高中数学衔接知识点+配套测验

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部