8.2消元——解二元一次方程组第1课时代入消元法教学目标1.用代入法解二元一次方程组.2.了解解二元一次方程组时的“消元”思想和“化未知为已知”的化归思想.3.会用二元一次方程组解决实际问题.重点难点重点用代入法解二元一次方程组.难点探索如何用代入法将“二元”转化为“一元”的消元过程.教学过程一、创设情境,引入新课教师出示下列问题:问题1:篮球联赛中,每场比赛都要分胜负,每队胜一场得2分,负一场得1分.某队为了争取较好的名次,想在全部22场比赛中得到40分,那么这个队胜负场数分别是多少?问题2:在上述问题中,我们也可以设出两个未知数,列出二元一次方程组,那么怎样求解二元一次方程组呢?二、尝试活动,探索新知教师引导:什么是二元一次方程组的解?(方程组中各个方程的公共解)学生列式计算后回答:满足方程①的解有:……满足方程②的解有:……这两个方程的公共解是师:这种列举法比较麻烦,有没有简单一点的方法呢?师:由方程①进行移项得y=22-x,由于方程②中的y与方程①中的y都表示负的场数,故可以把方程②中的y用(22-x)来代换,即得2x+(22-x)=40.由此一来,二元就化为一元了.解得x=18.问题解完了吗?怎样求y?将x=18代入方程y=22-x,得y=4.能代入原方程组中的方程①、②来求y吗?代入哪个方程更简便?这样,二元一次方程组的解就是教师归纳并板书:这种通过代入消去一个未知数,使二元方程转化为一元方程,从而方程组得以求解的方法叫做代入消元法,简称代入法.三、例题讲解【例1】用代入法解方程组分析:方程①中x的系数是1,用含y的式子表示x,比较简便.解:由①,得x=y+3.③把③代入②,得3(y+3)-8y=14.解这个方程,得y=-1.把y=-1代入③,得x=2.所以这个方程组的解是四、巩固练习1.课本第93页第2题2.二元一次方程组的解是()A.B.C.D.3.方程组的解是()A.B.C.D.4.解方程组【答案】1.略2.A3B4.解:由①得x+3=3y,即x=3y-3,③由②得2x-y=4,④把③代入④得y=2.把y=2代入③得x=3,因此原方程组的解为五、课堂小结你从本节课的学习中体会到代入法的基本思路是什么?主要步骤有哪些?让学生在互相交流的活动中完成本节课的小结,并能通过总结与归纳,更加清楚地理解代入消元法,体会代入消元法在解二元一次方程组的过程中反映出来的化归思想.教学反思通过创设有趣的情境,引发学生自觉参与学习活动的积极性,使知识的发现过程融于有趣的活动中,重视知识的发生过程.将设未知数列一元一次方程的求解过程与二元一次方程组比较,从而得到二元一次方程组的代入(消元)解法,这种比较可使学生在复习旧知识的同时,使新知识得以掌握,这对于学生体会新知识的产生和形成的过程是十分重要的.