电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

14.2-三角形全等的判定--教案VIP免费

14.2-三角形全等的判定--教案_第1页
14.2-三角形全等的判定--教案_第2页
14.2-三角形全等的判定--教案_第3页
14.2三角形全等的判定(SAS)百神庙镇中心学校方晓【学习目标】:1.知道三角形全等“边角边”的内容.2.会运用“SAS”识别三角形全等,为证明线段相等或角相等创造条件.3.经历探索三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程.【学习重点】:用SAS的方法证明两个三角形全等及证明三角形全等时的书写格式.【学习难点】:1、探索两个三角形全等的判定方法SAS;2、用SAS的方法证明两个三角形全等,进而证明角相等、线段相等与平行.【课前自学、课中交流】一、创设情境1.判定两个三角形全等的方法有什么?.2.我们已经知道两个三角形只满足一个或两个相等的条件不能保证两个三角形全等,对于满足三个条件我们已经讨论了SSS可以全等,那么其它情况呢?3、满足三个条件对边对应相等②两角和其中一个角的应相等①两角和它们的夹边对两角及一边对应相等的角对应相等②两边及其中一边所对等①两边及其夹角对应相两边及一角对应相等三角对应相等三边对应相等)4()3()2()1(本节课我们一起来探究两边及一角的情况。二、自主探究(一)自学课本P8—P10的内容,探索三角形全等的条件1.如图,AC、BD相交于O,AO、BO、CO、DO的长度如图所标,△ABO和△CDO是否能完全重合呢?为什么?(1)在上面的例子中我们已知哪些条件(从三角形的边、角关系作答),得到什么结论?AO=,BO=,∠AOB=∠(2)由(1)中的回答,你能得到什么猜想?第1页(共5页)2.上述猜想是否正确呢?不妨按上述条件画图并作如下的实验:(1)读句画图:①画∠DAE=45°,②在AD、AE上分别取B、C,使AB=3.5cm,AC=2.5cm.③连结BC,得△ABC.④按上述画法再画一个△A'B'C'.使A'B'=AB,A'C'=AC,∠A'=∠A。(2)把△A'B'C'剪下来放到△ABC上,观察△A'B'C'与△ABC是否能够完全重合?归纳总结:相等的两个三角形全等(简称“边角边”或“SAS”)巩固练习一:如图,已知AD∥BC,AD=CB.求证:△ABC≌△CDA.(提示:要证明两个三角形全等,已具有两个条件,一是AD=CB(已知),二是___________,三是___________,证明: AD∥BC∴∠DAC=_______在△ADC与△ABC中AD=CB∠DAC=_______AC=CA∴△ABC≌△CDA.(二)探究:如果“两边及其中一边的对角对应相等,那么这两个三角形全等吗?”画一画:三角形的两条边分别为4cm和3cm,长度为3cm的边所对的角为30度,画出这个三角形,把你画的三角形与其他同学画的三角形进行比较,由此你发现了什么?把你的发现和同伴交流。知识点归纳:三角形全等判定条件(2)第2页(共5页)3421BACDE。【课后反思】通过本节课的学习,我的收获和困惑是:【当堂训练】1.已知:点A、F、E、C在同一条直线上,AF=CE,BE∥DF,BE=DF.求证:AB∥CD2.如图,已知AB=AC,AD=AE,∠1=∠2.求证:△ABD≌△ACE.3如图,AD=AE,点D、E在BC上,BD=CE,∠1=∠2.求证:∠B=∠C证明: D、E在BC上∴∠1+∠3=180º,∠2+∠4=180º() ∠1=∠2(已知)∴∠3=()在△ABD和△ACE中AD=AE∠3=BD=CE∴≌(SAS)∴∠B=∠C()提问:此题还能得到哪些结论?。【课后作业】1.如图1,OA=OC,OB=OD,则图中有多少对全等三角形()A.2B.3C.4D.5第3页(共5页)ODCBA21EDCBADCBA(1)(2)(3)2.如图2,AB=AC,AD=AE,欲证△ABD≌△ACE,可补充条件()A.∠1=∠2B.∠B=∠CC.∠D=∠ED.∠BAE=∠CAD3.如图3,AD=BC,要得到△ABD和△CDB全等,可以添加的条件是()A.AB∥CDB.AD∥BCC.∠A=∠CD.∠ABC=∠CDA4.如图4,AB与CD交于点O,OA=OC,OD=OB,∠AOD=________,根据__________可得到△AOD≌△COB,从而可以得到AD=_________.5.如图5,已知△ABC中,AB=AC,AD平分∠BAC,请补充完整过程说明△ABD≌△ACD的理由. AD平分∠BAC∴∠________=∠_________(角平分线的定义)在△ABD和△ACD中 ___________________________________________∴△ABD≌△ACD()6.如图6,已知AB=AD,AC=AE,∠1=∠2,求证∠...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

教育精品店+ 关注
实名认证
内容提供者

优良的服务

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部