综合检测(二)第二章解析几何初步(时间90分钟,满分120分)一、选择题(本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2013·惠州高一检测)过两点A(-2,m),B(m,4)的直线倾斜角是45°,则m的值是()XkB1.comA.-1B.3C.1D.-3【解析】kAB==tan45°=1,∴m=1.【答案】C2.若两直线ax+2y=0和x+(a-1)y+(a2-1)=0平行,则a的值是()A.-1或2B.-1C.2D.【解析】由a(a-1)-1×2=0得a=-1或2,经检验a=-1时,两直线重合.【答案】C3.(2013·合肥高一检测)如果圆(x-a)2+(y-a)2=8上总存在两个点到原点的距离为,则实数a的取值范围是()A.(-3,-1)∪(1,3)B.(-3,3)C.[-1,1]D.(-3,-1]∪[1,3)【解析】数形结合 (0,0)、(a、a)所在直线是存在两点的垂直平分线,∴1<a<3或-3<a<-1.【答案】A4.在空间直角坐标系O—xyz中,点M的坐标是(1,3,5),则其关于x轴的对称点的坐标是()A.(-1,-3,-5)B.(-1,-3,5)C.(1,-3,-5)D.(1,3,-5)【解析】M(1,3,5)关于x轴对称的点,在x轴上的坐标不变,其他是其相反数,即为(1,-3,-5).【答案】C5.圆(x-3)2+(y+4)2=2关于直线y=0对称的圆的方程是()A.(x+3)2+(y-4)2=2B.(x-4)2+(y+3)2=2C.(x+4)2+(y-3)2=2D.(x-3)2+(y-4)2=2【解析】圆心(3,-4)关于y=0对称的点为(3,4),∴圆的方程为(x-3)2+(y-4)2=2.【答案】D6.(2013·南宁高一检测)过原点且倾斜角为60°的直线被圆x2+y2-4y=0所截得的弦长为()A.B.2C.D.2【解析】由题意得直线方程为y=x,圆的方程为x2+(y-2)2=4,圆心到直线的距离d==1,弦长|AB|=2=2.【答案】D7.(2013·潍坊高一检测)若直线l1:ax+(1-a)y-3=0与直线l2:(a-1)x+(2a+3)y-2=0互相垂直,则a的值是()A.-3B.1C.-1D.1或-3【解析】 l1⊥l2,∴a(a-1)+(1-a)(2a+3)=0,解得a=1或-3.【答案】D8.若点P(a,b,c)关于原点的对称点是P′,则|PP′|=()A.B.2C.|a+3+c|D.2|a+b+c|【解析】P′(-a,-b,-c).由两点间距离公式得|PP′|==2.【答案】B9.不论a为何数,直线(a-3)x+2ay+6=0恒过()A.第一象限B.第二象限C.第三象限D.第四象限【解析】由(a-3)x+2ay+6=0,得(x+2y)a+(6-3x)=0.令得∴直线(a-3)x+2ay+6=0恒过定点(2,-1).从而该直线恒过第四象限.【答案】D10.使得方程-x-m=0有实数解,则实数m的取值范围是()A.-4≤m≤4B.-4≤m≤4C.-4≤m≤4D.4≤m≤4【解析】设f(x)=,g(x)=x+m,在同一坐标系中画出函数f(x)和g(x)的图形,如图所示.则m是直线y=x+m在y轴上的截距.由图可知-4≤m≤4.【答案】A二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上)11.在空间直角坐标系中,已知点A(1,0,2),B(1,-3,1),点M在y轴上,且M到A与B的距离相等,则M的坐标是________.【解析】 M在y轴上,设其坐标为(0,y,0),由空间两点间的距离公式得=,得y=-1,∴M的坐标为(0,-1,0).【答案】(0,-1,0)12.已知点P在直线3x+y-5=0上,且P点到直线x-y-1=0的距离为,则P点坐标为________.新|课|标|第|一|网【解析】点P在直线3x+y-5=0上,设P(x0,y0),即P(x0,5-3x0).由点到直线的距离公式,得=,解得x0=2或x0=1,所以点P的坐标为(2,-1)或(1,2).【答案】(2,-1)或(1,2)13.两平行直线l1:3x+4y-2=0,l2:6x+ay-5=0的距离等于__________.【解析】由3a-24=0,得a=8,∴l2:3x+4y-=0.∴d==.【答案】14.(2013·九江高一检测)已知方程x2+y2+2mx-2my-2=0表示的曲线恒过第三象限的一个定点A,若点A又在直线l:mx+ny+1=0上,则m+n=________.【解析】已知方程即x2+y2-2+2m(x-y)=0,该曲线系恒经过圆x2+y2-2=0与直线x-y=0的交点,由得所过定点为(-1,-1),(1,1), 点A为第三象限的点,∴A点的坐标为(-1,-1),将其代入直线l的方程得(-1)·m+(-1)·n+1=0,即m+n=1.wWw.xKb1.coM【答案】1三、解答题(本大题共4小题,共50分.解答应写出文字说明,证明过程或演算步骤)1...