航空发动机研制难点目前,在各行各业众多工业产品中,能够称得上是“工业王冠”的大概只有喷气航空发动机和微电子芯片了。“工业王冠”不单单反应的是喷气式航空发动机在技术层面的研制难度,也不仅仅说明了航空发动机在飞机设计中属于“心脏”一样的核心地位,更说明了在国家发展过程中航空发动机如同“王权”一般高端的战略位置。但是我国偏偏在航空发动机研制过程中,长期处于“慢性心脏病”的状态,在追求“工业王权”的过程中,长期处于“知其然,不知其所以然”的境地。不过,在对航空发动机研制客观规律进行总结和对于国家发展有了更深层次的认识之后,我国在当今航空发动机技术发展的战略机遇期,不仅可以与航空强国齐头并进,还要创立属于中华民族的“动力王朝”。L・Xtlll.CCHTI现代涡扇发动机结构极其复杂,图为GE90大涵道比涡扇发动机结构剖视图采用三维气动算法进行理论计算的压气机叶片带有冷却孔的涡轮叶片,采用了激光熔接技术,号称是世界上最难制造的零件之一。xilu.t口E我国直到上世纪八十年代才开始的高推比核心机预研计F119-PW-100堪称是世界第一发动机,可是只是美国第四代核心机的衍生产品而已,后面还有三代L▲中推核心机在台架上—XLlu.com用于民航的大涵道比涡扇发动机,我国目前在这个领域没有自己的发动机型号。精心雕琢的工业王冠喷气式航空发动机的性能优势是建立在精巧的连续回旋转子结构上的,其研制难点也基本围绕这一个核心展开。现代飞机不断提高的战术技术指标对航空发动机提出了非常高的要求。高温、高压、高转速而又要求高可靠性、耐久性和维护性是其基本特点。在这些高而又相互矛盾的要求的推动促进下,航空发动机经过长时间的发展已经成为人类有史以来最复杂最精密的工业产品。压气机的作用是利用来自涡轮的能量对发动机进气进行压缩和增温。一方面提高了进气分子活跃程度,更有利于提高燃烧效率。另外一方面,增加了单位体积内的氧气含量,因为大气尤其是高空大气的单位体积含氧量太低,远小于燃烧室中的燃油充分燃烧所需的耗氧量。压气机的主要设计难点在于要保证效率、增压比和喘振裕度这三大主要性能参数满足发动机的设计要求。一个世纪以来,伴随着气动热力学、计算流体力学的发展压气机的设计水平在逐年提高。20世纪初采用螺旋桨理论设计压气机叶片,二十年代开始采用孤立叶形理论,三十年代中期开始采用叶栅设计理论,五十年代开始用二维设计技术,七十年代开始建立准三维设计体系,九十年代以来,航空界开始使用三维粘性流场分析设计体系对压气机进行设计。压气机设计理论、计算模型和设计系统在基础理论科研推动下不断进步跨越。即便是有先进的计算机辅助设计手段,如果基础科研理论没有进步,也无法在高性能压气机领域取得突破。由于压气机的逆压梯度相当大、需要对空气流场、温度场和压力场进行详尽的三维分析以及空气粘性计算极端复杂等原因,多级压气机级间匹配、不同工作状态下的性能优化非常困难。我国在航空发动机压气机设计和制造方面与世界航空强国的差距较小,这主要是源于我国在基础理论研究方面持续进行科研工作。1952年.吴仲华教授提出了S1-S2流面理论,并在这一理论的基础上建立了压气机准三维设计系统,直到现在虽然三维设计技术已经相对成熟,但是我国提出的准三维设计技术依然是国内外压气机设计理论体系的核心。不过我国由于长期进行发动机仿制而不是设计工作,在压气机工程实用的设计规范和试验数据方面与国外先进发动机公司相比还存在相当大的差距。压气机后面紧跟的是燃烧室。经过压气机压缩后的高压空气与燃料混合之后将在燃烧室中燃烧,产生高温高压燃气来推动燃气涡轮运转并从尾喷口高速喷出从而产生推力。航空发动机对燃烧室的要求是:第一,燃烧室单位容积的发热量或者说是热容强度要很高。通俗的说,就是要燃烧室在尽可能小的容积里完成高压空气与燃料的混合与充分燃烧。现代航空发动机的燃烧室长度一般只有十几厘米,而燃烧室进口与出口的温度差则高达数百甚至上千度。这么高的温升对于燃烧室结构设计、冷却设计和材料耐热能力都提出了极端要求。目前航空发动综合应用浮动壁火焰筒,多孔冷却火焰筒...