电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

反比例函数图象与三等分角VIP免费

反比例函数图象与三等分角_第1页
1/2
反比例函数图象与三等分角_第2页
2/2
反比例函数图象与三等分角历史上,曾有人把三等分角问题归结为下面的作图问题.任取一锐角∠POH,过点P作OH的平行线,过点O作直线,两线相交于点M,OM交PH于点Q,并使QM=20P,设N为QM的中点.∵NP=NM=OP,∴∠1=∠2=2∠3.∵∠4=∠3,∴∠1=2∠4.∴∠MOH=∠POH.问题在于,如何确定线段QM两端点的位置,并且保证O,Q,M在同一条直线上?事实上,用尺规作图无法解决这一问题.那么,退而求其次,能不能借助一些特殊曲线解决这一问题呢?帕普斯(Pappus,公元300前后)给出的一种方法是:如下图,将给定的锐角∠AOB置于直角坐标系中,角的一边OA与y=的图象交于点P,以P为圆心、以2OP为半径作弧交图象于点R.分别过点P和R作x轴和y轴的平行线,两线相交于点M,Q,连接OM得到∠MOB.(1)为什么矩形PQRM的顶点Q在直线OM上?(2)你能说明∠MOB=∠AOB的理由吗?(3)当给定的已知角是钝角或直角时,怎么办?解:(1)设P、R两点的坐标分别为P(a1,),R(a2,),则Q(a1,),M(a2,).设直线OM的关系式为y=kx.∵当x=a2时,y=∴=ka2,∴k=.∴y=x.当x=a1时,y=∴Q(a1,)在直线OM上.(2)∵四边形PQRM是矩形.∴PC=PR=CM.∴∠2=2∠3.∵PC=OP,∴∠1=∠2,∵∠3=∠4,∴∠1=2∠4,即∠MOB=∠AOB.(3)当给定的已知角是钝角或直角时,钝角或直角的一半是锐角,该锐角可以用此方法三等分.

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

反比例函数图象与三等分角

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部