人教课标九下·§26.3(3)26.3实际问题与二次函数(2)计算机把数据存储在磁盘上,磁盘是带有磁性物质的圆盘,磁盘上有一些同心圆轨道,叫做磁道,如图,现有一张半径为45mm的磁盘.(1)磁盘最内磁道的半径为rmm,其上每0.015mm的弧长为1个存储单元,这条磁道有多少个存储单元?问题探究(3)如果各磁道的存储单元数目与最内磁道相同.最内磁道的半径r是多少时,磁盘的存储量最大?(2)磁盘上各磁道之间的宽度必须不小于0.3mm,磁盘的外圆周不是磁道,这张磁盘最多有多少条磁道?(2)由于磁盘上各磁道之间的宽度必须不小于0.3mm,磁盘的外圆不是磁道,各磁道分布在磁盘上内径为r外径为45的圆环区域,所以这张磁盘最多有条磁道.3.045r(1)最内磁道的周长为2πrmm,它上面的存储单元的个数不超过015.02r分析分析3.045015.02rry即450450045.022rrry(3)当各磁道的存储单元数目与最内磁道相同时,磁盘每面存储量=每条磁道的存储单元数×磁道数,设磁盘每面存储量为y,则根据上面这个函数式,你能得出当r为何值时磁盘的存储量最大吗?450450045.022rrry当22900.00450.0045ryr900.004522.5420.0045bramm分析如图,在一个直角三角形的内部作一个矩形ABCD,其中AB和AD分别在两直角边上.(1)设矩形的一边AB=xm那么AD边的程度如何表示?(2)设矩形的面积为ym2,当x取何值时,y的值最大?最大值是多少?xAD4330xxy30432当x=20时,y最大=30040m30mABCD例题解析做一做用一段长为30m的篱笆围成一个一边靠墙的矩形菜园,墙长为18m,这个矩形的长,宽各为多少时?菜园的面积最大,面积是多少?探究3图中是抛物线形拱桥,当水面在l时,拱顶离水面2m,水面宽4m,水面下降1m,水面宽度增加多少?分析:我们知道,二次函数的图象是抛物线,建立适当的坐标系,就可以求出这条抛物线表示的二次函数,为解题简便,以抛物线的顶点为原点,以抛物线的对称轴为y轴建立直角坐标系.42l2122,2aa可设这条抛物线表示的二次函数为y=ax2.-2-121-1-2-31212yx这条抛物线表示的二次函数为如图建立如下直角坐标系由抛物线经过点(2,-2),可得做一做当水面下降1m时,水面的纵坐标为y=-3.请你根据上面的函数表达式求出这时的水面宽度.水面下降1cm,水面宽度增加____________m.解:2213x62x6,621xx解得水面的宽度m622x462做一做如图,隧道的截面由抛物线和长方形构成,长方形的长是8m,宽是2m,抛物线可以用表示.(1)一辆货运卡车高4m,宽2m,它能通过该隧道吗?(2)如果该隧道内设双行道,那么这辆货运卡车是否可以通过?2144yx(1)卡车可以通过.提示:当x=±1时,y=3.75,3.75+2>4.(2)卡车可以通过.提示:当x=±2时,y=3,3+2>4.-1-3-1-31313O想一想某果品批发公司为指导今年的樱桃销售,对往年的市场销售情况进行了调查统计,得到如下数据:(1)在如图的直角坐标系内,做出各组有序数对(x,y)所对应的点.连接各点并观察所得的图形,判断y与x之间的函数关系,并求出y与x之间的函数关系式;(2)若樱桃进价为13元/千克,试求销售利润P(元)与销售价x(元/千克)之间的函数关系式,并求出当x取何值时,P的值最大?分析:(1)正确描点、连线后,根据直线上两个点的坐标,可求出销售量y与销售单价x的关系式.链接中考解:(1)正确描点、连线.由图象可知,y是x的一次函数,设y=kx+b∵点(25,2000)、(24,2500)在图象上∴y=-500x+14500(2)P=(x-13)·y=(x-13)·(-500x+14500)=-500x2+21000x-188500=-500(x-21)2+32000∴P与x的函数关系式为P=-500x2+21000x-188500当销售价为21元/千克时,能获得最大利润.(2)销售利润(P)=销售量(y)×单个产品的利润,将(1)结果代入后得,销售利润P为以x为自变量的二次函数,“求出当x取何值时,P的值最大”即求抛物线顶点横坐标.链接中考链接中考