第4讲推理与证明1.(2016·课标全国丙)定义“规范01数列”{an}如下:{an}共有2m项,其中m项为0,m项为1,且对任意k≤2m,a1,a2,…,ak中0的个数不少于1的个数.若m=4,则不同的“规范01数列”共有()A.18个B.16个C.14个D.12个答案C解析第一位为0,最后一位为1,中间3个0,3个1,3个1在一起时为000111,001110;只有2个1相邻时,共A个,其中110100;110010;110001,101100不符合题意,三个1都不在一起时有C个,共2+8+4=14(个).2.(2016·山东)观察下列等式:-2+-2=×1×2;-2+-2+-2+-2=×2×3;-2+-2+-2+…+-2=×3×4;-2+-2+-2+…+-2=×4×5;…照此规律,-2+-2+-2+…+-2=__________.答案n(n+1)解析观察等式右边的规律:第1个数都是,第2个数对应行数n,第3个数为n+1.3.(2016·课标全国甲)有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是________.答案1和3解析由丙说:“我的卡片上的数字之和不是5”可知,丙为“1和2”或“1和3”,又乙说“我与丙的卡片上相同的数字不是1”,所以乙只可能为“2和3”,所以由甲说“我与乙的卡片上相同的数字不是2”,所以甲只能为“1和3”.1.以数表、数阵、图形为背景与数列、周期性等知识相结合考查归纳推理和类比推理,多以小题形式出现.2.直接证明和间接证明的考查主要作为证明和推理数学命题的方法,常与函数、数列及不等式等综合命题.热点一归纳推理1.归纳推理是由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概括出一般结论的推理.2.归纳推理的思维过程如下:→→例1(1)古希腊毕达哥拉斯学派的数学家研究过各种多边形数,如三角形数1,3,6,10,…,第n个三角形数为=n2+n,记第n个k边形数为N(n,k)(k≥3),以下列出了部分k边形数中第n个数的表达式:三角形数N(n,3)=n2+n,正方形数N(n,4)=n2,五边形数N(n,5)=n2-n,六边形数N(n,6)=2n2-n……可以推测N(n,k)的表达式,由此计算N(8,12)=____________.(2)已知f(n)=1+++…+(n∈N*),经计算得f(4)>2,f(8)>,f(16)>3,f(32)>,则有______________________.答案(1)288(2)f(2n)>(n≥2,n∈N*)解析(1)原已知式子可化为N(n,3)=n2+n=n2+n,N(n,4)=n2=n2+n,N(n,5)=n2-n=n2+n,N(n,6)=2n2-n=n2+n,由归纳推理可得N(n,k)=n2+n,故N(8,12)=×82+×8=288.(2)由题意得f(22)>,f(23)>,f(24)>,f(25)>,所以当n≥2时,有f(2n)>.故填f(2n)>(n≥2,n∈N*).思维升华归纳递推思想在解决问题时,从特殊情况入手,通过观察、分析、概括,猜想出一般性结论,然后予以证明,这一数学思想方法在解决探索性问题、存在性问题或与正整数有关的命题时有着广泛的应用.其思维模式是“观察—归纳—猜想—证明”,解题的关键在于正确的归纳猜想.跟踪演练1(1)两旅客坐火车外出旅游,希望座位连在一起,且有一个靠窗,已知火车上的座位的排法如图所示,则下列座位号码符合要求的应当是()A.48,49B.62,63C.75,76D.84,85(2)用黑白两种颜色的正方形地砖依照下图所示的规律拼成若干个图形,则按此规律,第100个图形中有白色地砖________块;现将一粒豆子随机撒在第100个图中,则豆子落在白色地砖上的概率是________.答案(1)D(2)503解析(1)由已知图形中座位的排列顺序,可得:被5除余1的数和能被5整除的座位号临窗,由于两旅客希望座位连在一起,且有一个靠窗,分析答案中的4组座位号,只有D符合条件.(2)按拼图的规律,第1个图有白色地砖(3×3-1)块,第2个图有白色地砖(3×5-2)块,第3个图有白色地砖(3×7-3)块,…,则第100个图中有白色地砖3×201-100=503(块).第100个图中黑白地砖共有603块,则将一粒豆子随机撒在第100个图中,豆子落在白色地砖上的概率是.热点二类比推理1.类比推理是由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有...