专题18统计与统计案例抽样方法【背一背基础知识】1.简单随机抽样:一般地,从元素个数为N的总体中逐个不放回地抽取容量为n的样本,如果每一次抽取时总体中的各个个体有相同的可能性被抽到,这种抽样方法叫做简单随机抽样.最常用的简单随机抽样的方法:抽签法和随机数法.简单随机抽样适用范围是:总体中的个体性质相似,无明显层次;总体容量较小,尤其是样本容量较小。2.系统抽样:假设要从容量为N的总体中抽取容量为n的样本,第一步,先将总体的N个个体编号;第二步,确定分隔间距,对编号进行分段,当(n是样本容量)是整数时,取k=;当(n是样本容量)不是整数时,先用简单随机抽样剔除-[]个个体,取k=[];第三步,在第1段用简单随机抽样确定第一个个体编号l(l≤k);第四步,按照一定的规则抽取样本,通常是将l加上间隔k得到第2个个体编号,再加k得到第3个个体编号,依次进行下去,直到获取整个样本.系统抽样的适用范围是:元素个数很多且均衡的总体;各个个体被抽到的机会均等。3.分层抽样:当总体由有明显差别的几部分组成时,为了使抽取的样本更好地反映总体的情况,常采用分层抽样,将总体中各个个体按某种特征分成若干个互不交叉的几部分,每一部分叫做层,在各层中按层在总体中所占比例进行简单随机抽样或系统抽样,这种抽样方法叫做分层抽样.分层抽样的应用范围是:总体由差异明显的几部分组成的情况;分层后,在每一层抽样时可采用简单随机抽样或系统抽样.【讲一讲提高技能】1必备技能:在系统抽样的过程中,要注意分段间隔,需要抽取几个个体,样本就需要分成几个组,则分段间隔即为(为样本容量),首先确定在第一组中抽取的个体的号码数,再从后面的每组中按规则抽取每个个体.解决此类题目的关键是深刻理解各种抽样方法的特点和适用范围.但无论哪种抽样方法,每一个个体被抽到的概率都是相等的,都等于样本容量和总体容量的比值.2典型例题:例1.已知某地区中小学生人数和近视情况分别如图1和如图2所示,为了了解该地区中小学生的近视形成原因,用分层抽样的方法抽取的学生进行调查,则样本容量和抽取的高中生近视人数分别为()图1初中生4500名高中生2000名小学生3500名图2503010O近视率/%年级高中初中小学A.,B.,C.,D.,【分析】本题考查分层抽样与统计图,直接应用概念解题.【答案】A例2.某校高一、高二、高三分别有学生1600名、1200名、800名,为了解该校高中学生的牙齿健康状况,按各年级的学生数进行分层抽样,若高三抽取20名学生,则高一、高二共抽取的学生数为.【分析】分层抽样即按比例分配.【答案】70【练一练提升能力】1.为了了解名学生的学习情况,采用系统抽样的方法,从中抽取容量为的样本,则分段的间隔为()A.B.C.D.【答案】C【解析】由题意知,分段间隔为,故选C.2.从3001名学生中选取50名组成参观团,现采用下面的方法选取:先用简单随机抽样从3001人中剔除1人,剩下的3000人再按系统抽样的方法进行,则每个人被选到的机会()A.不全相等B。均不相等C。无法确定D。都相等3.甲、乙两套设备生产的同类产品共4800件,采用分层抽样的方法从中抽取一个容量为80的样本进行检测.若样本中有50件产品由甲设备生产,则乙设备生产的产品总数为________件.【答案】1800频率分布直方图与茎叶图【背一背基础知识】1.①频率分布直方图:在频率分布直方图中,纵轴表示,数据落在各小组内的频率用各长长方形的面积表示,各小长方形的面积总和等于1.连接频率分布直方图中各小长方形上端的中点,就得到频率分布折线图.随着样本容量的增加,作图时所分的组数增加,组距减小,相应的频率分布折线图就会越来越接近于一条光滑的曲线,统计中称之为总体密度曲线,它能够更加精细的反映出总体的分布规律.2.频率分布直方图的步骤如下:(ⅰ)求极差;(ⅱ)确定组距和组数;(ⅲ)将数据分组;(ⅳ)列频率分布表;(ⅴ)画频率分布直方图.频率分布直方图能很容易地表示大量数据,非常直观地表明分布的形状.3.茎叶图:茎是指中间的一列数,叶是从茎的旁边生长出来的数.茎叶图表示数据有两个突出的优点:其一是统计图上没有原始数据的损失,所有信息都可以从这...