电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高中数学高考专题复习:多参数问题的解法VIP免费

高中数学高考专题复习:多参数问题的解法_第1页
1/11
高中数学高考专题复习:多参数问题的解法_第2页
2/11
高中数学高考专题复习:多参数问题的解法_第3页
3/11
多参数问题的解法常用方法有:一、分离变量法。若在等式或不等式中出现两个变量,其中一个变量的范围已知,另一个变量的范围为所求,且容易通过恒等变形将两个变量分别置于等号或不等号的两边,则可将恒成立问题转化成函数的最值问题求解。例1.已知当xR时,不等式a+cos2x<54sinx+恒成立,求实数a的取值范围。分析:在不等式中含有两个变量a及x,其中x的范围已知(xR),另一变量a的范围即为所求,故可考虑将a及x分离。解:原不等式即:4sinx+cos2x3即>a+2上式等价于或,解得a<8.说明:注意到题目中出现了sinx及cos2x,而cos2x=12sin2x,故若把sinx换元成t,则可把原不等式转化成关于t的二次函数类型。另解(先确定主元):a+cos2x<54sinx+即a+12sin2x<54sinx+,令sinx=t,则t[1,1],整理得2t24t+4a+>0,(t[1,1])恒成立。设f(t)=2t24t+4a+则二次函数的对称轴为t=1,f(x)在[1,1]内单调递减。只需f(1)>0,即>a2.(下同)例2.已知函数f(x)在定义域(,1]上是减函数,问是否存在实数k,使不等式f(ksinx)f(k2sin2x)对一切实数x恒成立?并说明理由。分析:由单调性与定义域,原不等式等价于ksinx≤k2sin2x≤1对于任意x∈R恒成立,这又等价于对于任意x∈R恒成立。不等式(1)对任意x∈R恒成立的充要条件是k2≤(1+sin2x)min=1,即1≤k≤1----------(3)不等式(2)对任意x∈R恒成立的充要条件是k2k+≥[(sinx)2]max=,即k≤1或k≥2,-----------(4)由(3)、(4)求交集,得k=1,故存在k=1适合题设条件。说明:抽象函数与不等式的综合题常需要利用单调性脱掉函数记号。二、选择恰当的参数作为主元(其余视为常量)例3、已知f(x)是定义在[-1,1]上的奇函数,且f(1)=1,若a,b∈[-1,1],a+b≠0有>0.(1)判断函数f(x)在[-1,1]上是增函数,还是减函数,并证明你的结论;(2)解不等式f(x+)<f((3)若f(x)≤m-2am+1,对所有x∈[-1,1],a∈[-1,1]恒成立,求实数m的取值范围.解答:(1)任取x∈[-1,1],且x<x,则-x∈[-1,1],又f(x)是奇函数,于是有:f(x)-f(x)=f(x)+f(-x)=·(x-x),由已知>0,x-x<0,所以f(x)-f(x)<0,即f(x)<f(x).所以函数f(x)在[-1,1]上是增函数.(2)因为函数f(x)在[-1,1]上是增函数,所以不等式f(x+<f(等价于不等式组:1由①得-由②得x0,或x≥2;由③得x<-1,或1<x<所以原不等式的解集为{x|-<-1}.(3)因为函数f(x)在[-1,1]上都是增函数,且f(1)=1,故对所有的x∈[-1,1],有f(x)≤1.由已知,对所有的x∈[-1,1],a∈[-1,1],f(x)≤m,有m≥1成立,即m≥0.记g(a)=-2am+m∈[-1,1],g(a)≥0成立,只需g(a)在[-1,1]上的最小值大于等于0.即解得:m≤-2,或m=0,或m≥2.故m的取值范围为m≤-2,或m=0,或m≥2.注:第(1)中的a,b可分别视为,第(3)涉及到3个变量x,m,a,对于右边的两个参数m,a要善于选择恰当的参数作为主元,运用一次函数的单调性。例4、分析:2、分析:选择A。2三、根据函数的单调性、值域特征或不等式的解集特征对多参数分步讨论例5、已知函数fxaxx()()10,(1)若fxx()2在[1,)上恒成立,求实数a的取值范围;(2)若函数yfx()在[m,n]上的值域是[]()mnmn,,求实数a的取值范围。解答:(1)在(1,)上恒成立,即恒成立,设则ahx()在(1,)上恒成立hxx'()2102hx()在[1,)上单调递增hxhmin()()1故ah()1即a3a的取值范围为(,3),(2)由题意知nm0时,由(1)知fx()在(0,)上单调递增mfmnfn()(),,fxx()有两个不相等的正根即xax210有两个不相等的正根m,na00a2例6、已知不等式x2–3x+t<0的解集为{x|1

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

高中数学高考专题复习:多参数问题的解法

您可能关注的文档

慧源书店+ 关注
实名认证
内容提供者

从事历史教学,热爱教育,高度负责。

确认删除?
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群