中档大题分类练(二)数列(建议用时:60分钟)1.已知Sn是数列{an}的前n项和,a1=4,an=2n+1(n≥2).(1)证明:当n≥2时,Sn=an+n2;(2)若等比数列{bn}的前两项分别为S2,S5,求{bn}的前n项和Tn.[解](1)证明:当n≥2时,∵Sn=4+(5+7+…+2n+1)=4+=n2+2n+1,∴Sn=(2n+1)+n2=an+n2.(2)由(1)知,S2=9,S5=36,∴等比数列{bn}的公比q==4,又b1=S2=9,∴Tn==3(4n-1).2.设数列{an}的前n项和为Sn,已知a1=1,Sn+1=4an+2.(1)设bn=an+1-2an,证明:数列{bn}是等比数列;(2)求数列{an}的通项公式.[解](1)证明:由已知有a1+a2=4a1+2.解得a2=3a1+2=5,故b1=a2-2a1=3.又an+2=Sn+2-Sn+1=4an+1+2-(4an+2)=4an+1-4an,于是an+2-2an+1=2(an+1-2an),即bn+1=2bn.因此数列{bn}是首项为3,公比为2的等比数列.(2)由(1)知等比数列{bn}中b1=3,公比q=2,所以an+1-2an=3×2n-1.于是-=,因此数列是首项为、公差为的等差数列.=+(n-1)=n-.所以an=(3n-1)·2n-2.3.设Sn为数列{an}的前n项和,已知a3=7,an=2an-1+a2-2(n≥2).(1)证明:{an+1}为等比数列;(2)求{an}的通项公式,并判断n,an,Sn是否成等差数列.[解](1)证明:∵a3=7,a3=3a2-2,∴a2=3,∴an=2an-1+1,∴a1=1,==2(n≥2),∴{an+1}是首项为2,公比为2的等比数列.(2)由(1)知,an+1=2n,∴an=2n-1.∴Sn=-n=2n+1-n-2,∴n+Sn-2an=n+2n+1-n-2-2(2n-1)=0∴n+Sn=2an,即n,an,Sn成等差数列.4.设Sn是数列{an}的前n项和,已知a1=1,Sn=2-2an+1.(1)求数列{an}的通项公式;(2)设bn=(-1)nlogan,求数列{bn}的前n项和Tn.[解](1)∵Sn=2-2an+1,a1=1,∴当n=1时,S1=2-2a2,得a2=1-=1-=;当n≥2时,Sn-1=2-2an,∴当n≥2时,an=2an-2an+1,即an+1=an,又a2=a1,∴{an}是以a1=1为首项,为公比的等比数列.∴数列{an}的通项公式为an=.(2)由(1)知,bn=(-1)n(n-1),Tn=0+1-2+3-…+(-1)n(n-1),当n为偶数时,Tn=;当n为奇数时,Tn=-(n-1)=,∴Tn=(教师备选)1.已知数列{an}的前n项和Sn=n2+pn,且a2,a5,a10成等比数列.(1)求数列{an}的通项公式;(2)若bn=1+,求数列{bn}的前n项和Tn.[解](1)当n≥2时,an=Sn-Sn-1=2n-1+p,当n=1时,a1=S1=1+p,也满足an=2n-1+p,故an=2n-1+p,∵a2,a5,a10成等比数列,∴(3+p)(19+p)=(9+p)2,∴p=6.∴an=2n+5.(2)由(1)可得bn=1+=1+=1+,∴Tn=n+-+-+…+-=n+=.2.已知数列{an}的前n项和为Sn,且满足Sn=(an-1),n∈N*.(1)求数列{an}的通项公式;(2)令bn=log2an,记数列的前n项和为Tn,证明:Tn<.[解](1)当n=1时,有a1=S1=(a1-1),解得a1=4.当n≥2时,有Sn-1=(an-1-1),则an=Sn-Sn-1=(an-1)-(an-1-1),整理得:=4,∴数列{an}是以q=4为公比,以a1=4为首项的等比数列.∴an=4×4n-1=4n(n∈N*),即数列{an}的通项公式为:an=4n(n∈N*).(2)由(1)有bn=log2an=log24n=2n,则,==,∴Tn=+++…+=-+-+-+…+-=<,故得证.