星星使天空绚丽夺目;知识使人增长才干。主备人:向玉萍张正勇审核人:牟必继2.2.4《平面与平面平行的性质》使学生掌握平面与平面平行的性质,并会应用性质解决问题。让学生知道直线与直线、直线与平面、平面与平面之间的位置关系可以相互转化。教学目的复习提问、引入新课复习:如何判断平面和平面平行?答:有两种方法,一是用定义法,须判断两个平面没有公共点;二是用平面和平面平行的判定定理,须判断一个平面内有两条相交直线都和另一个平面平行.思考:如果两个平面平行,会有哪些结论呢?探究新知探究1.如果两个平面平行,那么一个平面内的直线与另一个平面有什么位置关系?a答:如果两个平面平行,那么一个平面内的直线与另一个平面平行.借助长方体模型探究结论:如果两个平面平行,那么两个平面内的直线要么是异面直线,要么是平行直线.探究新知探究2.如果两个平面平行,两个平面内的直线有什么位置关系?探究3:当第三个平面和两个平行平面都相交时,两条交线有什么关系?为什么?探究新知答:两条交线平行.下面我们来证明这个结论abαβ如图,平面α,β,γ满足α∥β,α∩γ=a,β∩γ=b,求证:a∥b证明: α∩γ=a,β∩γ=b∴aα,bβ α∥β∴a,b没有公共点,又因为a,b同在平面γ内,所以,a∥b这个结论可做定理用结论:当第三个平面和两个平行平面都相交时,两条交线平行定理如果两个平行平面同时和第三个平面相交,那么它们的交线平行。用符号语言表示性质定理://,aba//b想一想:这个定理的作用是什么?答:可以由平面与平面平行得出直线与直线平行小结小结如果不在一个平面内的一条直线和平面内的如果不在一个平面内的一条直线和平面内的一条直线平行一条直线平行,,那么这条直线和这个平面平行。那么这条直线和这个平面平行。线线平行线面平行线面平行线线平行线面平行的线面平行的判定定理判定定理线面平行的线面平行的性质定理性质定理如果一条直线和一个平面平行,经过这条直线的如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。平面和这个平面相交,那么这条直线和交线平行。例题分析,巩固新知例1.求证:夹在两个平行平面间的平行线段相等.讨论:解决这个问题的基本步骤是什么?答:首先是画出图形,再结合图形将文字语言转化为符号语言,最后分析并书写出证明过程。证明:因为AB//CD,所以过AB,CD可作平面γ,且平面γ与平面α和β分别相交于AC和BD.因为α//β,所以BD//AC.因此,四边形ABDC是平行四边形.所以AB=CD.,//,//,,,,.:.CBDABCDABCD如图且A求证练习巩固1.指导学生完成P61练习.2.如果一条直线与两个平行平面中的一个相交,那么它与另一个也相交。αβAlγabαβAlB已知:如图,α∥β,l∩β=A求证:l与α相交。·证明:在α上取一点B,过l和B作平面γ,由于γ与α有公共点B,γ与β有公共点A,所以,γ与α,β都相交,设γ∩α=b,γ∩β=a,因为α∥β,所以a∥b,又因为l,a,b都在平面γ内,且l与相a交于点A,所以l与b相交,所以l与a相交。1.一条直线和两个相交平面平行,求证:它和这两个平面的交线平行。已知直线a∥平面α,直线a∥平面β,平面α∩平面β=b,求证a//b.dcbaba例题示范例2:已知平面外的两条平行直线中的一条平行于这个平面,求证:另一条也平行于这个平面。第一步:将原题改写成数学符号语言如图,已知直线a,b,平面α,且a//b,a//α,a,b都在平面α外.求证:b//α.第二步:分析:怎样进行平行的转化?→如何作辅助平面?第三步:书写证明过程例3如图,已知α∥β,点P是平面α,β外的一点(不在α与β之间),直线PB,PD分别与α,β相交于点A,B和C,D.(1)求证:AC∥BD;(2)已知PA=4,AB=5,PC=3,求PD的长.题型二由面面平行证线线平行【解】(1)证明: PB∩PD=P,∴直线PB和PD确定一个平面γ,则α∩γ=AC,β∩γ=BD.又α∥β,∴AC∥BD.(2)由(1)得AC∥BD,∴PAAB=PCCD,∴45=3CD,∴CD=154,∴PD=PC+CD=274.【名师点评】本题实质是利用面面平行的性质定理证明线线平行,关键是要明确PB,PD确定一个平面.例4如图,正方体ABC...